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Abstract

In this paper we set up a model of interacting drug epidemics by taking the
”direct-product” of variations on a one-dimensional optimal control model
that exhibits a so-called DNSS or Skiba threshold. Such a threshold reflects
in drug policy the well-established paradigm of ”eradication vs. accommo-
dation”; that is, depending on the initial state, stabilizing a drug market at
either a low or a high level of use is optimal.
We investigate whether and how this ”eradication vs. accommodation”
paradigm extends to higher dimensional models and whether and how the
presence of a second drug can alter the optimal policy description for the
first drug.
The main results are, first, the presence of a second drug market can dramat-
ically alter or even reverse the optimal policy prescription for the first drug
market. Second, with interacting drug markets ”eradication vs. accommo-
dation” is no longer a binary choice. Rather, we observe a fascinating series
of situations with multiple optimal steady states and complex structures of
optimal solutions.
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1. Introduction

Illegal drugs impose enormous costs on societies throughout the world and
present challenging problems for policy makers. Over the last decade optimal
control theory has been harnessed to provide crucial insights concerning how
policy ought to adapt over the course of a drug epidemic (see for example
Tragler et al., 2001; Behrens et al., 2000, 2002; Bultmann et al., 2008a,b).

These models employ mechanisms from epidemiology to describe the
spread of drug use in a population. Drug users tend to start using by having
contact to already active users, thus getting ”infected” by using individuals.
This leads to a dynamic feedback loop familiar from conventional epidemics.
Recognizing these effects the literature concludes that policy should react dy-
namically to an evolving drug market. This paper advances that literature
by exploring the optimal control of multiple interacting drug epidemics.

A common feature in these mathematical models are ”tipping points”
that indicate a certain size of a drug problem, above which ”eradication”,
in the sense of the stabilizing the drug problem at a low level of use is not
optimal anymore. Once the epidemic has grown beyond this certain size,
an ”accommodation” strategy that delays the growth of the problem rather
than reversing it is the policy of choice. In this paper, each drug by itself
would exhibit such a tipping point, and the primary question of interest is
how if at all this may be affected by the presence of another drug epidemic.
Inasmuch as the general framework of multiple contagious interacting ”bads”
(as opposed to goods) occurs in diverse contexts (multiple diseases, multiple
biological pests, etc.) the overall framework and approach may be of general
interest. However, the functional forms we use are specific to drug policy
modeling.

While the ”eradicate or accommodate” paradigm is reasonably well es-
tablished, to date it has been examined primarily within one dimensional
models. However, a more realistic model would recognize that there are
often multiple important dimensions of market size or activity.

For instance, there is not just one drug. A common situation in the U.S.
and parts of Europe is that there are robust markets for both heroin and for
a stimulant such as cocaine (often in the form of crack). Many dependent
users are polydrug users, willing and able to switch from one substance to
another in response to changes in availability and price.

Likewise, there may be two distinct regions that can have separately
measurable levels of activity but which are nonetheless linked inasmuch as
drug sellers and/or users can migrate from one market to another. One can
also think of multiple adjacent countries. E.g., at various times there has
been considerable friction between the Netherlands and its neighbors over
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”drug tourism”.
So it is natural to ask whether and how the ”accommodate vs. eradicate”

choice generalizes to multi-dimensional markets. The strategy we employ to
approach this question is to take the ”direct-product” of variations on one
of the most fundamental and widely studied optimal control models of drug
markets, that of Tragler et al. (2001). Zeiler et al. (to appear) present some
mathematical results for the very special case of two identically parameterized
drug epidemics. Here we consider the more realistic case of asymmetric
epidemics, by starting with symmetry and then varying one epidemic in
various ways.

Substantively the most important insight is simply that the presence of
a second drug market can dramatically alter the policy prescriptions for the
first drug market, and what is optimal to do can depend crucially on the
nature of the linkage between the two markets. For example, if a drug acts
as a gateway that facilitates escalation to a second drug, the optimal policy
may change from ”accommodation” in the isolated case to ”eradication”
when the combined system is considered. In other cases the presence of the
second drug ”tips” the solution toward accommodation.

Methodologically we observe a fascinating series of results that reflect
some important developments in optimal control theory. In optimal con-
trol theory ”tipping point behavior” is indicated by the existence of so-
called DNSS or Skiba points (henceforth DNSS, named after Dechert and
Nishimura, 1983; Sethi, 1977, 1979; Skiba, 1978). A DNSS point indicates a
point at which a decision maker is indifferent between choosing one of two
or more optimal strategies, because each strategy would generate the same
(minimal) cost. So this phenomenon is related to the familiar tipping points
in uncontrolled models, but differs by pertaining to models with an objective
function. Due to the higher dimensional nature of our model, DNSS thresh-
olds are curves instead of points, which allows a variety of additional insights
to optimal policy prescriptions.

This paper is organized as follows. First, we introduce the mathematical
model of two interacting drug epidemics and its formulation as an optimal
control problem, and solve it by applying Pontryagin’s Minimum Principle.
Second, we present numerical results on the optimal control of drug epidemics
of equal importance and of different size, of early stage drug scenarios, and of
epidemics in distinct jurisdictions. We close with a discussion of the results
and important conclusions for controlling such interacting systems.
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2. A Model of Interacting Drug Epidemics

2.1. Underlying Dynamics

Drug use can be thought of as an epidemic process, because there is a
positive feedback from the current number of users to the number of new ini-
tiates. The one-dimensional model we use is based on Tragler et al. (2001),
who analyzed the the optimal dynamic allocation of treatment and enforce-
ment in illicit drug control. Tragler et al. (2001) tracked the total number of
users A(t) over time, not differentiating between lower- and higher-frequency
users as in Behrens et al. (1999, 2000, 2002). This leads to a relatively simple
model that is easy to adapt. The dynamics of A(t) is governed by three flows:
initiation, I(t), which was a power function of the current number of users
A(t) and of the retail price p, natural desistance, Ω(t), which is users who
quit without being assisted, and desistance induced via drug control, U(t).

We modified this model in two ways. First, we replaced Tragler et al.’s
initiation function by the more familiar logistic function, which better re-
flects the reality that there exists a maximum number of users even when no
controls are applied. Second, the control ”law enforcement” is omitted for
simplicity, which leads to a constant retail price. Bultmann et al. (2008a,b)
and Grass et al. (2008) discussed these modifications at length.

The impact of control spending for ”treatment”, u(t), is modeled as in-
creasing the flow out of drug use. We choose the same functional form as in
the model of drug treatment of Rydell et al. (1996). In fact, the control can
be seen as representing any control driven outflow, but for ease of exposition
we refer to it as ”treatment”. The impact of control spending is assumed to
have diminishing returns (”cream skimming”). This can be thought of as re-
flecting some ability to target spending so that when funds are limited, they
are allocated first to the most cost-effective programs. Natural desistance,
Ω(t), is modeled as occurring at a constant per-capita rate.

2.2. Interaction Among Models

Several forms of interaction between the epidemics are possible. We call
the interaction ”migration”; it can be understood as either physical migra-
tion, e.g. from one city to another, or in a wider sense as a change of primary
substance of abuse. The system is ”closed” with respect to this interaction,
i.e. when an individual migrates from one population to another the total

number of drug users in the system is not (directly) affected by that flow.
Here, migration is modeled as a ”push” mechanism. That is, the number

of users migrating is independent of the number of users in the target popula-
tion. The connecting flows are constant per capita rates, denoted by γA and
γB. γA denotes the rate at which users leave population A by migrating into
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B, and γB denotes the rate at which users leave population B by migrating
into A. We exclude balanced polydrug use, so at one moment of time either
A or B is the primary substance or location of abuse for every individual.

2.3. Mathematical Formulation

In optimization there has to be a metric which measures what is ”best”.
We follow other optimal control models of illicit drug use and define the
objective to be minimizing the weighted sum J of the costs of drug use and
of drug control spending over a long (infinite) planning horizon.

Use is measured in quantity consumed given by the term A(t)pA(t)−ωA(t),

where pA is the retail price per gram and ωA is the absolute value of the
short run price elasticity of demand. In the objective functional quantity
consumed is weighted by the average social cost per gram consumed, κA

and κB, respectively. Spending on drug control, uA(t) and uB(t), enter the
functional linearly.

The cost functional is separable in use and control of each substance.
That is, the model can handle drugs of different social costs, e.g. heroin and
cannabis. With the separable control variables the decision maker is able to
direct financial resources dynamically to each of the epidemics.

The costs are discounted at an annual rate r for the usual reasons.
Letting A(t) and B(t) denote the current number of users and uA(t) and

uB(t) denote the control effort exerted on the indexed epidemic at time t,
the model is given by

min
uA(t), uB(t)≥0

J =

∫ ∞

0

e−rt(κAp−ωA

A A(t) + κBp−ωB

B B(t) + uA(t) + uB(t)) dt,

(1)

subject to

Ȧ(t) = kAp−aA

A A(t)(mA − A(t)) − cA

(

uA(t)

A(t)

)zA

A(t)

− µApbA

A A(t) − γAA(t) + γBB(t),

Ḃ(t) = kBp−aB

B B(t)(mB − B(t)) − cB

(

uB(t)

B(t)

)zB

B(t)

− µBpbB

B B(t) + γAA(t) − γBB(t),

where k is a constant governing the rate of initiation, a is the elasticity of
initiation with respect to price, m is the maximum number of users, c is
the control efficiency proportionality constant, z is a parameter reflecting
diminishing returns of treatment, µ is the baseline rate at which users quit
without treatment, and b is the elasticity of desistance with respect to price.
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The five terms in each state equation model initiation, control driven
outflow, natural desistance and migration, respectively.

2.4. Model Solution

The optimal control problem (1) is solved by applying Pontryagin’s Min-
imum Principle (cf. Feichtinger and Hartl, 1986; Grass et al., 2008; Leonard
and Long, 1992), which provides necessary optimality conditions. These are
used to transform problem (1) into a so-called canonical system, which here
is a four-dimensional system of ordinary non-linear differential equations.

To derive the canonical system we consider the current value Hamiltonian
H = H(A, B, λA, λB, uA, uB) defined by

H = λ0(gA(A, uA, ρA) + gB(B, uB, ρB)) + λAȦ + λBḂ, (2)

where λA and λB denote the costate variables in current value terms and
λ0 ≥ 0 is a nonnegative constant multiplier associated with the integrand of
the objective function

gA(A, uA, ρA) + gB(B, uB, ρB) = κAp−ωA

A A + κBp−ωB

B B + uA + uB. (3)

The time argument t is omitted for brevity. If λ0 = 0, then the Hamil-
tonian minimizing condition would yield at least one ui = ∞, i ∈ {A, B},
because H is monotonically decreasing in ui and there is no upper bound on
the controls. That would maximize rather than minimize the objective func-
tion (1). Hence, we can conclude that λ0 6= 0 and may set λ0 = 1 without
loss of generality.

There must exist two non-positive multipliers ηA and ηB for the non-
negativity constraints on the controls such that the partial derivatives of
the Lagrangian function L = L(A, B, λA, λB, uA, uB, ηA, ηB) with respect to
the controls are equal to zero when evaluated along an optimal path. The
Lagrangian function is defined by L = H + ηAuA + ηBuB, and the comple-
mentary slackness conditions, ηi ≤ 0 ∧ ηi ui = 0, ∀ i ∈ {A, B}, imply that as
long as the optimal controls are in the interior of the feasible region, i.e. are
strictly positive, the Lagrangian function L reduces to the Hamiltonian H
and the solutions of the constrained problem equals the unconstrained one.

So, if ∀i ∈ {A, B} : ui > 0, the necessary optimality condition on the con-
trols is to minimize the Hamiltonian subject to the constraints at any instant
of time, that is u⋆

i = arg minui
H. Using the convexity of the Hamiltonian

with respect to the controls, which is proven by the positive definiteness of
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the Hessian matrix,

∂2H

∂ui∂uj

=

(

− 1
A
cA

(

uA

A

)zA−2
(zA − 1)zAλA 0

0 − 1
B
cB

(

uB

B

)zB−2
(zB − 1)zBλB

)

,

i, j ∈ {A, B}, we can derive u⋆
A = A(cAzAλA)

1

1−zA and u⋆
B = B(cBzBλB)

1

1−zB

for the controls by setting Hui
= 0. If any ui = 0, i ∈ {A, B}, the comple-

mentary slackness condition yields ηi ≤ 0, where an explicit form for ηi can
be derived from Lui

= 0.
Furthermore, the costate equations are given by λ̇A = rλA − HA and

λ̇B = rλB − HB. The limiting transversality conditions for the costates λA

and λB are limt→∞ e−rtλA(t) = 0 and limt→∞ e−rtλB(t) = 0 and hold if states
and costates approach a stable state. The state and costate equations form,
after substituting for the controls, the canonical system.

Problem (1) yields long-run steady state solutions that are saddle-node
equilibria. The candidate trajectories for optimal solutions are paths that
converge into such a saddle point. These paths are calculated numerically
using the method presented in Grass et al. (2008).

We use the parametrization of Bultmann et al. (2008a,b), which roughly
describes the current US cocaine epidemic. With these values the underlying
one-state model manifests a DNSS point. All scenarios analyzed are built
by using round percentage changes to some of the baseline parameter values
that preserve the DNSS structure in the unconnected isolated systems.

3. Results

3.1. Drugs of Equal Importance

We look first at the case of two drugs of roughly equal importance and for
which users can flow in either direction, from drug A to drug B or vice versa.
A typical application example would be one city or country dealing with two
”hard” drugs, such as heroin and cocaine/crack. The connecting flows are
assumed to be symmetrical, i.e. the rate at which users switch to the other
drug is identical for drugs A and B. Furthermore, the state equations and
cost functionals are identically parameterized.

As a foil, consider first what happens if there is no interaction between
the two populations. Then we have merely the ”direct product” of two one-
state optimal control problems. The optimal control strategy depends then
on the initial state of each epidemic only. In the phase portrait, Figure 1,
this is represented by the two straight DNSS lines that separate the locally
optimal steady states. Since each epidemic converges either to its high (H) or
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low level of use (L), the two-dimensional model has four optimal outcomes,
(L, L), (H, L), (L, H), and (H, H). If the system starts at a point on such a
DNSS line the decision maker can pursue eradication or accommodation at
equal costs for at least one epidemic. On the central intersection point of the
DNSS lines there are four options: either eradication or accommodation of
both drugs or one of two discordant strategies, where one epidemic is driven
to its low level of use, while the other converges to the high-level of use.

Once even a modest amount of interaction is introduced this situation
changes. Figure 2 shows the phase portrait for γA = γB = 0.005. That is,
every year just one half of one percent of drug users switch their primary
substance of abuse to the other drug. With connected systems every action
taken on one epidemic (indirectly) influences the other, because the connect-
ing flows change. The asymmetric steady states move from the boundary to
the interior of the state space, and are now separated by five different DNSS
curves. In the figure these DNSS curves are shown together with the DNSS
lines of the zero interaction case (grey, dashed). The area between the solid
DNSS curves and the dashed DNSS lines are a set of initial values for which
the optimal outcome has changed because of the introduction of this very
modest interaction. When this set is of significant size we know that the
system reacts sensitively to changes of the respective parameters.

In Figure 2 it is obvious that interaction favors the ”pure” eradication or
accommodation strategies; the area in which it is optimal to maintain just
one drug at a small level of use gets smaller. However, the effect is modest,
because the systems are only very loosely connected.

A more relevant case is depicted in Figure 3, where γA = γB = 0.01, so the
migration rate has about the same magnitude as the natural desistance. Here,
the quality of the solution has fundamentally changed. The two asymmetric
steady states are no longer optimal, i.e. if the system starts in such a state
the decision maker’s better choice is to use control to leave this steady state
for the low-level of use. Consequently we have two instead of four optimal
steady states and these are separated by a single DNSS threshold. Zeiler
(2007) has shown that this structure holds for any γ > 0.0051987.

Since this critical value of γ is so small, one might say that interaction
reduces the policy question to the familiar one of eradication versus accom-
modation, i.e. the two epidemics may be treated as one large drug problem.
But this is not quite true, since the DNSS curve is convex in the states. So
it is not just the total number of users in the system of drug use that deter-
mines the outcome, but the relation of the initial states of A and B. At the
central DNSS point (which is a DNSS point for all identically parameterized
systems with symmetric migration) the total number of users in the system
is roughly 10.4 million. Because of the convexity, the total number of users
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Figure 1: Identically parameterized epidemics without migration, γ = 0.

such that the decision maker is indifferent between eradicating both or ac-
commodating both epidemics increases when moving away from this central
DNSS point. In policy terms this means that eradication of both epidemics
is indicated even though the total number of users exceeds the sum of the
separate, single drug DNSS thresholds.

It may seem counterintuitive that eradication is easier when the initial
conditions are asymmetric, but optimal control exploits the asymmetry by
attacking first the market where progress is easiest.

To conclude when there is only a moderate level of interaction between
two epidemics of equal importance choosing between ”eradication” or ”ac-
commodation” is still the question to ask, but the answer depends now in
part on the relative numbers of users of the two drugs, not just on the total
number of users.
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Figure 2: Identical epidemics with little mi-
gration, γ = 0.005.
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Figure 3: Identical epidemics with modest
migration, γ = 0.01.
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3.2. Interacting Epidemics of Different Size

The case discussed in the last section, where both drugs are of equal
size, is important but in many countries use of one of the substances is more
widespread. In the Americas stimulants are more widely abused, whereas in
Europe the opiates market is much larger.

We model such a situation by doubling the maximum number of users of
drug B, mB, as compared to the base case. This lets B grow to a high steady
state that is about twice the size of the base case, and it lets B grow faster.
That is, drug B is more attractive than A in the sense that users are more
easily initiated into use. Furthermore, we double the social costs incurred by
B, so the large drug is also of greater relative importance.

Figure 4 shows a phase portrait of this case with symmetric migration
at rate γA = γB = 0.005. The dashed lines depict the DNSS thresholds of
the respective epidemics without interaction. Please note, that the DNSS
threshold of the isolated large epidemic B is now about twice its size in the
base case. So increasing the maximum number of users and increasing the
social cost parameter leads to an exact scale up of the drug problem, where
the point of indifference is measured relative to the base case and not in
absolute numbers.

Figure 4 shows that the rate of migration necessary to reduce the problem
to a binary choice between either eradication or accommodation of both
drugs is even smaller than in the previous section. The value of γ = 0.005
used here is sufficient to reduce the number of optimal steady states to two.
Furthermore, the single DNSS curve differs only slightly from the DNSS
threshold of an isolated, large drug B. That is, the large drug B dominates
the system to such an extent that the long run behavior of both epidemics
depends almost only on the initial state of B.

So, in the more realistic setting of interacting epidemics that are of dif-
ferent size, what is optimal for the larger drug is generally optimal for the
whole system. And this is true even when the rate of migration between the
drugs is small. If a decision maker has the problem of a well established,
large drug B, then stabilization of a newly emergent but less important drug
at a low level of use can never be optimal, even if the upcoming drug grows
more slowly. On the other hand if a drug is already well-established when
a potentially more serious drug emerges, then it may be optimal to quickly
eradicate the established minor drug to prevent it from fueling growth of the
more problematic drug. ”Minor” in this context is relative - half as much
use at the high steady state and half as costly per user for a total problem
size one quarter as great. Conceivably this could be interpreted to question
whether the US perhaps should have worked harder to eradicate heroin before
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cocaine/crack came along, although it is not clear that the policy instruments
available were actually powerful enough to make that possible.

3.3. One-Directional Flows

Drug use ”careers” often progress through a predictable sequence of stages
of use. These stages can be different levels of use of one substance (e.g. casual
use of heroin is followed by regular use that leads to a stage where treatment
is needed, Caulkins et al. (2007)) or a ”progression” from use of one substance
to use of another. Here, we model such a progression in the use of different
substances by letting users only migrate from drug A to drug B.

There are two important subcases depending on whether the social costs
associated with use of the first drug are relatively minor or are of the same
magnitude as the social costs of the second drug. The former case (when use
of the first drug creates relatively few problems besides the risk of escalation)
matches some people’s understanding of the relationship between so-called
soft drugs (notably cannabis) and hard drugs. It is well established that
drug users often follow established patterns of escalating through a sequence
of substances (e.g., first alcohol, then tobacco, marijuana, and on to whatever
hard drug is common in that cultural context). There is enormous debate
about whether the escalation sequence is causal, so we should be clear that
our model of the relationship is causal. Halving use of drug A will halve
escalation from A to B in this model. The second case of similar social costs
might describe the interaction between stimulants and opiates (dependent
stimulant users sometimes use opiates to take the edge off the long-term
stimulant use and become frequent opiate users).

A further distinction regards initiation. In a stimulants vs. opiates case
direct initiation to drug B is not uncommon, whereas in a cannabis to hard
drugs escalation scenario initiation to B might occur primarily via earlier use
of drug A.

In all discussed cases we set γB = 0, i.e. there is no flow from epidemic B

to A. To stay in an area where the qualitative results are robust to changes
of the interaction parameter in the identical case, we set γA = 0.01.

3.3.1. One-Way Interaction Can Reverse The Optimal Policy

Here, two equally costly drugs attract new users equally and the epidemics
are equally parameterized, except for the one-way flow from A to B.

Figure 5 depicts this solution. The DNSS lines of the uncoupled systems
are shown by dashed grey lines. There are three optimal long-run solutions:
stabilization of both drugs at a low or high level of use, (L, L) and (H, H),
and an eradication of the early drug while accommodating the late drug.
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Figure 4: Epidemics of different size and
equal importance with little, symmetric mi-
gration; mB = 2mA and γA = γB = 0.005.
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Figure 5: Identical epidemics with a one-
directional flow from A to B, γA = 0.01
and γB = 0.

So a first finding here is that pursuing an eradication strategy on the late
drug without controlling the first drug is not advisable. This can be explained
easily; the one-directional flow acts as an additional outflow of drug A and
an additional inflow to drug B. So in an asymmetric steady state with a
larger A there is a constant stream of users that makes the control of B at a
low level of use very difficult and hence too costly to be optimal.

Compared to the case of symmetrical flows, the DNSS curves that sep-
arate (L, H) from its adjacent equilibria are only slightly affected. The in-
teresting DNSS curve is again the (L, L)-(H, H) DNSS curve that runs now
only through the lower right ”quadrant” (defined by the DNSS points of the
uncoupled systems). If the systems were isolated, for all initial values in this
quadrant the early drug A would converge to a high steady state and the
late drug B to a low-level of use.

In contrast, suppose the asymmetric system starts at a point such as P1

that lies below the (L, L)-(H, H) DNSS curve. If there were no progression
from drug A to B the high costs of driving epidemic A down would outweigh
the corresponding benefits and use of A would be allowed to remain high.
But if drug A acts as a gateway that facilitates escalation to a second drug B

there is a large additional area in which an eradication strategy for A should
be applied to prevent the whole drug system from growing to a high rate of
use for both drugs. So if there is a second drug B, the optimal policy for A

changes from accommodation to eradication.
Furthermore, the DNSS curves do not intersect the A axes in the relevant

area of the state space. So, if the second drug B is sufficiently small, the
low level steady state of A should be approached for all initial values of A,
even if escalation would have been optimal in the isolated system. Thinking
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chronologically, if drug B simply did not exist before A stabilized, but then
drug B suddenly became available, that change might imply a radical revision
in what the optimal policy is for the established drug A.

If the system starts at a point such as P2 that lies above the (L, L)-(H, H)
DNSS curve, the optimal policy changes for the late drug from eradication
to accommodation. The additional inflow from A leads in this area of the
state space to a situation where the decision maker’s better choice is to let
both epidemics converge to (H, H) instead of (L, L). That is, the prior
existence of an established ”feeder drug” makes eradication less appealing
for a newly emergent drug that would come later in the natural progression
of use through a sequence of different substances.

So here we show a case where the familiar ”accommodation” versus ”erad-
ication” choice gets turned on its head. In a significant area of the state space,
a discordant strategy should be applied that leads to an asymmetric steady
state, (L, H). For all other initial values the crucial factor that determines
the final outcome is once more the combination of the initial states and the
quality of the linkage of the two systems, and not so much the total number
of users. So once the system is two-dimensional, the quality of the solution
gains complexity.

3.3.2. A Lower Social Cost Favors Eradication

Next we consider the same set up, (identical drugs with a one-way flow
from A to B) but now social cost per user of drug A is half that of drug B.

This modest variation changes the optimal policy thoroughly. Figure 6
shows the optimal solution of this case together with the DNSS curves of the
previous case. As before there are three optimal steady states, the symmet-
ric low and high levels of use and the asymmetric (L, H) state. However,
the DNSS curves that separate the basins of attraction have fundamentally
changed, greatly increasing the area in the state space for which a pure ac-
commodation strategy is optimal.

An interesting phenomenon occurs at the sharp bend of the (L, L)-(H, H)
DNSS curve. Here the DNSS curve is intersected by an indifference curve
that separates two different ways of getting to the same long-run steady
state. Such a phenomenon can only occur in optimal control models of higher
dimension and is hence of great interest.

Here the occurrence of the indifference curve is directly related to the
differences in the social costs parameter. When starting on this indifference
curve the decision maker has two options to drive the system to the high
level of use. S/he can opt for pt1, a path where the number of costly users
of drug B is larger or for pt2, where more control is exerted to keep B small
as long as possible. However, the indifference curve is very small. In a later
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example we show such an indifference curve that is of significant size (see
Section 3.4.1).
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Figure 6: Early drug A is less costly than
late drug B, κA = 0.5κB, γA = 0.01 and
γB = 0.
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Figure 7: Most initiation happens via the
early and less costly drug A, kB = 0.7kA,
κA = 0.5κB, γA = 0.01 and γB = 0.

3.3.3. Lower Social Costs and Sequential Initiation Bring Back Eradication

The previous scenario might loosely describe escalation from cannabis to
heroin use except for the fact that initiation directly into heroin was just
as common as cannabis initiation, whereas in reality few people start using
heroin without first using cannabis. We take this into account by reducing
the initiation constant of the late drug B by 30%. This can be interpreted as
assuming that 70% of heroin initiation is independent of cannabis use, but
30% is causally connected in the sense that halving cannabis use would halve
that 30% of heroin initiation.

This has two consequences in the system dynamics. First, the total num-
ber of users of drug B is less ”dangerous” in the sense that the number of
new users per current user is smaller than in the base case. Second, the
inflow of drug A has a relatively larger weight in the dynamics of drug B, so
a reduction of this inflow has a greater impact on the system dynamics of B.

Figure 7 shows the new phase portrait. Here, the steady state (H, L)
is an optimal steady state. This contrasts with the previous results, where
eradication of the early drug was only optimal in combination with eradica-
tion of the late drug. But with the extra weight on the inflow from A to B,
stabilization of the late drug at a low level is optimal for some initial values,
even though the early drug grows to its high level of use.

The second striking result is the loss of optimality of the (L, H) steady
state. So far stabilizing the early drug at a low level of use while allowing
escalation of the late drug was a candidate for an optimal policy. But chang-
ing the initiation constant led to a situation where the early drug gained so
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much weight in the dynamics that eradication of the late drug always pays
off whenever the early drug is small enough. That is a striking structural
change to arise from changing one parameter by only 30%.

With a further decrease of the initiation constant the picture changes
once more. When the late drug attracts new users directly to only a very
small extent, then the initial state of the early drug dominates the situation
even though the early drug has substantially smaller social costs. Hence, if
the early drug A is small enough, eradication is the policy of choice; if it
has grown beyond a certain threshold, both epidemics should converge to a
high level of use, regardless of the initial value of the late drug B. So, if
the progression to a late drug happens almost exclusively via another drug,
the early drug should determine the policy choice between eradication and
accommodation, Inasmuch cannabis use is already well-established in many
regions around the world, this could be interpreted as an argument against
trying to achieve a low drug use equilibrium.

Concluding we can say, that in a system where users ”progress” from one
drug to the next, the nature of this progression is crucial. When the more
costly substance attracts migrating users mainly from an ”earlier” substance
(i.e. marijuana, ecstasy or LSD), this earlier substance governs optimal policy
(Figure 7). However, if the diffusion process of initiation of new users through
existing users is of relatively high importance for the later drug (Figure 6),
then the presence of the feeder drug may alter the optimal strategy for the
late, costly drug from ”accommodation” to eradication.

3.4. Distinct Jurisdictions

The extreme version of asymmetric costs is when the two states represent
drug using populations in adjacent but distinct jurisdictions. That is, one
drug, here B, does not directly impose any societal costs on the decision
maker because those users live in another jurisdiction.

We distinguish between two important cases. In case one, the policy
maker cannot or does not want to influence policy making in the other coun-
try. The other country’s epidemic is assumed to grow uncontrolled from the
decision maker’s perspective.

In case two the decision maker in country A is willing to fund interventions
in the second country, if this intervention would bring benefits to his or her
own country, because the reduced number of users in the adjacent country
leads to smaller migration of users from B to A. This could occur with a
decision maker from a large and affluent country that funds treatment in a
smaller, poorer neighbor.
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3.4.1. Case One: An Uncontrollable Neighboring Drug Epidemic Changes

the Question from ’Where To Go’ To ’How To Get There’

In this scenario drug B does not impose costs in the objective functional,
so κB = 0. Also drug B cannot be controlled by the decision maker, which
is modeled by setting the efficiency of control to zero, so cB = 0.

As it is assumed that B grows uncontrolled to a high level of use, popu-
lation B provides a constant inflow to A. Hence, an overall low level of use
cannot be reached from any initial value where either A or B is positive.

In the phase portrait, Figure 8, this manifests in a single, stable steady
state, where both drugs are at a high level of use, although the number of
users in A is slightly smaller than in B because control is exerted on A in its
high steady state.

This is not surprising. What is more striking is the existence of an in-
difference curve, and one of significant length. If the system starts on this
indifference curve, for example on the initial value of the trajectories pt1 and
pt2, the decision maker has two options. Moving to the left of the indiffer-
ence curve, on pt1 control is used to keep the number of costly users A low
for as long as possible, i.e. until the second epidemic has grown so close to
its steady state value that the constant stream of new users makes further
control inefficient. Moving to the right of the indifference curve, on pt2, the
system converges more or less directly to the high level of use.

In a slightly different interpretation, we can say that when control begins
before epidemic A has grown beyond the level indicated by the indifference
curve, the optimal policy is to fight hard in order to maintain the drug prob-
lem at a small level for as long as possible. If drug A has grown beyond this
curve, an ’accommodation’ strategy is optimal, while the epidemics converge
directly to the overall high level of use.

Figure 9 shows the remarkable differences in the optimal policies. It
shows how the optimal controls along pt1 and pt2, u

pt1
A and u

pt2
A , depend

on the state of A. Both start at A(0), the origin of the discussed paths.
The control curve to the left of the vertical line corresponds to the part of
trajectory pt1 that lies to the left of its initial value in Figure 8. Here control
is used to such an extent that it causes the number of users in A to drop
quickly to a minimum level. However, eventually drug B’s population grows
to the point of being a significant source of inflow to drug A. The effects
on A’s population are briefly resisted, but by the time the number of users
grows back to its initial level, the tide of immigration is overwhelming and
even less control is used than would initially have been used when following
trajectory pt2. So point A(0) indicates a point of indifference between two
substantially different optimal policies.
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This sheds new light on the form in which tipping points and thresholds
for different optimal policies can occur. Here we have an example of a set
initial values that qualify as ’tipping points’ even though the final outcome
is uniquely given. Depending on the side of the indifference curve the sys-
tem starts in, the optimal policy ’tips’ either towards an aggressive control
strategy (on the left side) or a moderate strategy (the right side). So, the
indifference curve separates two optimal policies of very different quality, but
both trajectories lead to the same place. This shows that the question to ask
in higher dimensional systems is not only about the best final outcome, but
also about the best way to get there.
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Figure 8: Similar drugs in different regions
where only drug A is controllable and im-
poses costs to the decision maker, κ2 = 0,
c2 = 0 and γ = 0.01.
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ADNSS Â(H,H)

0 2 4 6 8 10
×106

0

0.5

1

1.5

2

2.5

Figure 9: Optimal controls along two paths
starting on the indifference curve. Only
drug A is controllable and only it imposes
costs κ2 = 0, c2 = 0 and γ = 0.01.

3.4.2. Case Two: Charity towards a Drug Using Neighbor May Be Self-

Serving

A decision maker responsible for region A might be willing to fund drug
control in an adjacent country, B, even if drug use in region B does not
(directly) impose costs on the decision maker, since controlling population
B reduces the number of users that migrate from B to A.

This scenario is reflected by having both control efficiencies, cA and cB,
at baseline levels but by setting the social cost parameter of B, κB, to zero.

Figure 10 shows a phase portrait of this situation together with a dashed
line marking the DNSS curve from Figure 3 which was identically parame-
terized except that κ2 = κ1 rather than κ2 = 0. There are again two different
optimal strategies, eradication of both epidemics and accommodation of both
epidemics. However, the area in which eradication is optimal is very small
when compared to Figure 3, because the direct benefits of lower use of drug
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B are externalities not realized by the decision maker’s objective functional.
From a transcendent social welfare perspective, not enough is invested in
control when the beneficial effects on one subpopulation are not valued by
the decision maker.

More concretely for decision maker A eradicating drug B, while A is
large, does not bring any benefits for the decision maker. Conversely, if B

was large, it would provide a continuous stream of users migrating into A,
the control of which is not optimal. However, for smaller levels of interaction
a discordant strategy is optimal.

The (L, L) and (H, H) states are separated by a single DNSS curve that
is intersected by an (H, H)-(H, H) indifference curve. As in the last section,
this indifference curve separates two different strategies that both lead to the
same steady state, but on distinct paths. However, this curve is relatively
short, so its impact on the structure of the optimal solution is limited.

We concentrate here instead on solutions with a ”classical” DNSS behav-
ior. Figure 11 shows how the controls depend on state A, when the system
starts at such a DNSS point, P . When eradication is pursued (to the left of
the vertical line) the controls start at a very high level, before decreasing as
eradication process. To the right side, the system converges to the overall
high level of use (H, H). Consequently, both controls are at a lower level.
Note that the dashed line representing control uB is positive throughout the
course of the epidemic; it is always in A’s self-interest to fund at least a little
drug control in Region B if cream skimming lets the first dollars be directed
toward very high value targets.

So, the important policy implication from this case is that investing in
the control of a drug problem in a distinct jurisdiction can be beneficial, even
if this drug problem does not directly impose costs on the decision maker.

4. Discussion and Conclusions

For more than a decade optimal control theory has been applied to epi-
demiological models of illicit drug use. One of the most important resulting
ideas is the paradigm of multiple optimal steady states with low and high
levels of use leading to a strategic choice between ”eradication” versus ”ac-
commodation”, which means driving drug use down toward some low level
steady state or allowing it to grow to a high level steady state. However, so
far only single populations have been considered.

This paper extends the analysis from a single drug market to two inter-
acting drug markets, and in the process generates at least three important
insights. First, modeling single drug markets may be a potentially hazardous
simplification, since the presence of a second drug market can dramatically
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Figure 10: Similar drugs in different re-
gions. Both drugs can be controlled, but
only drug A imposes costs, so κ2 = 0,
c2 = c1 and γ = 0.01.
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Figure 11: Optimal controls for similar
drugs in different regions. Both drugs can
be controlled, but only drug A imposes
costs, so κ2 = 0, c2 = c1 and γ = 0.01.

alter the policy prescriptions. In Section 3.1, for example, we saw that the
introduction of a modest amount of interaction can dramatically change the
quality of the optimal solution. So, the optimal strategy may depend on the
relative sizes of the initial levels of drug use, not just on the individual initial
states or their sum. Section 3.3.1 offered another example that underlines
this point is presented in which the presence of a second drug market can
altogether reverse the optimal policy prescription for the first drug market.
However, Section 3.2 shows that a simplification to a one-dimensional system
may be justifiable when drugs whose epidemics are of different importance
and size are considered. Then the joint optimal strategy reduces essentially
to what is optimal for the more important epidemic.

A second insight is that ”eradication” versus ”accommodation” is not
necessarily a binary choice when there are multiple populations. The op-
timal policy for a system of drug markets may be a mix of strategies, the
combination of which depends on the nature and the initial states of the
drug markets involved. In all three early stage drug scenarios discussed in
Section 3.3, we saw that there is a significant area in the state space where
a discordant strategy is advisable meaning, one drug is driven to a low level
steady state while the other grows toward its high level steady state. In the
example presented in Section 3.4.1 we saw that in two-dimensional models
the relevant question to ask is not only ”Where are we going?”, but also ”How
should we get there?”. Indifference and, hence, threshold behavior does not
only occur in the form of two optimal outcomes but as well in the form of
two different optimal paths that lead to one certain long-run solution.

Third, we have shown that a parallel population, that is not costly itself
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but that is connected to the population of concern, can have a tremendous
impact on the optimal solution (Section 3.4). So decision makers should be
advised to consider controlling not only drug use within their borders but
also funding interventions for adjacent populations.

From a more general perspective, we presented a case study of taking the
”direct product” of two one-dimensional optimal control models (with DNSS
threshold behavior).

In the last years numerical methods and computational power have ad-
vanced to the point that two-dimensional optimal control problems with
higher dimensional DNSS points can be solved in reasonable time and for
a wide range of cases. This enables researchers to analyze and perform sen-
sitivity analysis on more complex models. This opens a whole variety of pos-
sible, higher dimensional applications, built by generalizing one-dimensional
systems to two-dimensional ones.

Such parallel systems are of relevance in many application domains. Fur-
ther research could include other epidemiological models, such as the opti-
mal control of multiple, interacting diseases (e.g. HIV and HCV) or infectious
diseases in different populations (e.g. HIV/AIDS in adjacent countries). Fur-
thermore, one might be interested in generalizing from one to two dimensions
some famous examples in the economics literature, like the Ramsey Growth
Model (Skiba, 1978) or a version of the contagion model for optimal adver-
tising (Sethi, 1979).

Several insights gained here can be carried over to the analysis of the
”direct product” of optimal control models in general (cf. Zeiler et al., to
appear). Most notable is the realization that a little interaction can matter a
lot. In most of the named applications, state dependence and tipping points
have occurred in one-dimensional settings. These phenomena are common
and important, so a deeper understanding of both the technical aspects and
the policy application of them are of great interest and should be analyzed
in models of different applications and different complexity.
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