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Abstract

Given the constantly raising world-wide energy demand heétcompanying increase in green
house gas emissions that pushes the progression of clilmatge, the possibly most important task
in future is to find a carbon-low energy supply that finds tlyhtibalance between sustainability
and energy security. For renewable energy generation Jewespecially the second aspect turns
out to be difficult as the supply of renewable sources urgkedirong volatility. Further on, invest-
ment costs for new technologies are so high that competis® with conventional energy forms
is hard to achieve. To address this issue we analyze in tpisr@anon-autonomous optimal con-
trol model considering the optimal composition of a poitiatonsisting of fossil and renewable
energy in order to cover the energy demand of a small coutéhjile fossil energy is assumed to
be constantly available, the supply of the renewable resoiluctuates seasonally. We further on
include learning effects for the renewable energy techmpolarhich will underline the importance
of considering the whole life span of such a technology faglterm energy planning decisions.
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1 Introduction

Facing the impacts of climate change, the rapid economic growth coming along hiigher energy
demand as well as the fact that one of the main contributors to the constamédgsimg green house
gas emissions is given by the energy sector, the possibly biggest probthrs century will be to find

a carbon-low, sustainable and simultaneously secure energy supphgfdie, the incentives for devel-
oping and improving renewable energy technology have changed dbugrigst decades. Originally,
the driving force was given by the rapidly narrowing horizon of theletiign of fossil fuels. However,
due to the development of new extraction techniques and the discoveeya$ources nowadays the
threats of global warming play a major role. Mitigation policies to support investsie renewable en-
ergy technologies try to reduce the emissions and slow down the global vggpnaicess. The available
alternatives of energy generation in the future, however, stronglgrdepn structural and technologi-
cal changes together with the accompanying investment decisions righbeoause the development
and the diffusion of a new technology is a time-intensive dynamic procésklémon (2000)). This
underlines the importance of timely planing for energy technology choinesoritrast to conventional
energy generation, the high investment costs of renewable energyleghrare the main factor con-
sidered for decision policies, which implies that investments in new technolegyoatponed until they
get cheaper and hence this strongly restricts the scale of alternatigy @@meration (cf. Rong-Gang
(2013) and Berglund andd8erholm (2006)). Therefore, it is important to consider the whole liéasp
of a new technology in energy planning decisions in order to include thestfi process and the cost
reduction that comes along with implementing the new technology. Another chalt#frrenewable
energy generation is that the supply of renewable sources is not sbastdl but fluctuating.

To investigate this issue we consider a small country in which a representi@dision maker of
the energy sector optimizes a portfolio consisting of fossil and renewalglgy We postulate for
simplicity that full information about the energy demand that has to be covermhilable and that
it is stationary, as done in Coulomb and Henriet (2011). Instead of asguh@ahthe energy demand
depends on the GDP of the country as it is done in Chakravorty et aR)20bn the electricity price,
we follow Messner (1997) and consider the energy demand to be exageiven this demand and
considering the fact that the supply of the used renewable sourcestisating seasonally, the repre-
sentative energy sector decision maker optimizes this portfolio to find the meistféective solution.
We focus especially on solar energy and follow Chakravorty et al.§2B0omitting completely the
possibility of storage, so that the generated energy has to be used immedoliaitiigrwise is lost.

In the literature of recent years, some important developments in macmaizsand energy eco-
nomics can be observed, dealing with the issue of technological changde W some modeling
approaches technological change, if considered at all, has beedédchs an exogenous increase in
energy conversion efficiency, more recently the aim has been to emulagjg model technological
change especially in form of learning by doing effects, sometimes alsadeved as technological
learning (see for example Chakravorty et al. (2008), Chakravordy. ¢2011), Messner (1997), Re-
ichenbach and Requate (2012}ider et al. (2006)). To include into our model the aspects of learning
by doing we use a log-linear learning curve to model decreasing investostd# as a function of
accumulated experience.

As we consider in our approach the seasonal fluctuations in the suppy@i/able sources, this
optimal control problem with one state and two controls exhibits a particular matiwal property
by being non-autonomous. Solving this problem by applying Pontryaginisnmen principle, we
are looking for a periodic solution that solves the non-autonomous ca@ygtem, which makes the
problem numerically sophisticated and which differs from the usual stetadg analysis of autonomous
approaches.

The paper is organized as follows. We briefly present first the corafelparning by doing in
energy planing models in Section 2. In Section 3 we then give a detailedtestiof the model
formulation, while Section 4 deals with the solution of the problem. The numeeésalts are presented
and interpreted in Section 5. As it turns out that the optimal long-run solutisensitive with respect



to the fossil energy price, the learning coefficient, as well as to gebmapsite specific parameters,
we conduct a sensitivity analysis with respect to these parameters in S@éckarally, we summarize
our findings, give conclusions and a brief outlook on future work irtiSed .

2 The Learning Curve Concept

The development of the learning curve originates from Wright (193&) @dserved that in an airplane-
manufacturing the number of working-hours spent for the producticanddirframe is a decreasing
function of the total number of the previously produced airframes of theedgtpe. In other words,
this means that the unit costs of labor declined with experience measureaitative output. Later,
Arrow (1962) used cumulative gross investments in form of cumulativdymtion of capital goods as
an index of experience so that each new machine produced and usednoduction process changes
the production environment and leads to a learning process with contimmealtive. There exist some
other references in the literature, however, stating that interruptions pftiduction process could also
cause negative learning effects, referred to as forgetting by nogf dsee for example Argote et al.,
1990; Argote and Epple, 1990; Epple et al., 1991; Benkard, 200d),lence, rather net investments
are a better index for experience. In all different forms, the learnimgecconcept has been applied
in many different fields of research and has become an important tool wuneeeost-effectiveness of
technologies.

Given the goal of achieving adequate technology policies to mitigate climatgehidue implemen-
tation of endogenous technological change via the learning curve in mafdelsire energy scenarios
is essential (e.g. see Wler and Messner (1998) and Gerlagh and Van der Zwaan (2008))earning
curve provides an important tool to measure the cost effectivenessliof gecisions to support new
technologies. It connects expected future costs with current investmertkat the cost of the new
technology depends on earlier developments reflected by the cumulgbi@eitya This comes along
with the path dependence of technological competition.

The learning curve quantifies empirically the impact of learning by doing opriguction costs of
an industry or a firm by considering the investment costs as a decliningdorat cumulative capacity
or cumulative output, where both of these factors are an approximatiamoefledge (cf. Argote et al.
(21990)). In literature, a variety of different functional forms modelingsth interrelationship can be
found but the probably most common one is the log-linear function to its simplicdyitarobserved
good fit with data. In this case, the progressive decrease is explayndet [30-called progress rate
given as

PR=279,

wherea > 0 is the learning coefficient. The progress rate corresponds to thenpage change in
costs, when the cumulative capacity is doubled. Therefore, a pragitessf 80% means that the costs
are reduced to 80% of its previous value when the cumulative capacityedoUthis reduction of 20%
is referred to as the learning by doing rate and is given by

LDR=1-PR=1-2"7

The costs then are calculated as u
Ke\
- -t 1

R )
whereC; are the investment costs at tirheK; is the cumulative capacity at time Kg is the initial
cumulative capacity at time= 0 andCy are the initial investment costs. This scaling expresses that
for an initially low cumulative capacity, it takes more efforts and investmentsddymre a given level
of energy than for an initially high cumulative capacity (cf. Van der Zwatasl.(2002)). Taking the
logarithm of equation (1) yields an expression which can be estimated medmncally in order to get

an estimate foor, and therefore for the learning by doing r&tieR. This, of course, strongly depends
on the type of technology and is crucial for the speed of learning (a&egwn estimates of learning
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rates for a set of energy technologies can be found in McDonald amatnholzer (2001)). Equation
(1) is also referred to as the single- or one-factor-learning curve.

3 The Model

To investigate the challenges of including renewable energy into a powtansyunder the aspect of
learning by doing, we consider an economy of a small country in which lestilfand renewable en-
ergy can be used as perfect substitutes to cover an exogenoustyegiesyy demand. Due to the size
of the country we assume that there are no or at least not enough &evfolsdil resources and therefore
fossil energy has to be imported from other countries for the currerkangrice. As far as renewable
energy is concerned, harvesting is for free and the generation iblgogsthin the own country. In
contrast to fossil energy, which is assumed to be constantly availableyppé/ of renewable energy
seasonally fluctuates. In order to use this renewable energy resocapital is necessary for the energy
generation, for which investments have to be undertaken. We consideurfanodel a representa-
tive energy sector decision maker who chooses the optimal energylfgoctionposition for the whole
country. It is postulated that this representative energy sector deaisiker has full information about
the energy demand that has to be covered at each point of time. Thetedéshe decides on the most
cost-effective portfolio consisting of these two energy types, taking iotount the seasonal fluctua-
tions of renewable energy supply, the investment costs for renewadigyegeneration capital which
decline with experience and the import costs of fossil energy. One impamtafication of the size of
the country is, that the representative energy sector decision maksuised to be a price taker, and
therefore his/her decision has no influence on the market price.

We take the considered fossil energy as an aggregate of fossilyesmrgces (e.g. coal, gas, etc.),
and focus on solar energy as renewable resource. To give an kextnfhe seasonal supply of solar
energy, Figure la shows the average global radiation per month in Au€tna can clearly observe
the seasonal differences that pose a challenge to a constant rémenalyy supply over the whole
year. Saving, of course, would be supportive in the short-run,dweerather are interested in long-run
solutions and for this time frame saving possibilities are limited, we completely omitgst@naour
model approach and focus only on the change in the portfolio compositmmcilide these seasonal
fluctuations in our model, we use a deterministic time-dependent function

VR(t) = vsir?(tm) + T,

which is plotted in Figure 1b. The period length of the fluctuation is one yearthe minimal supply
in winter andv is the maximal increment during summer. To get reasonable parameter valused/
Austrian data (ZAMG (2012)) for estimation. Note that we only consideuahfiuctuations and do
not include daily fluctuations as well as changes due to weather condifiorcnvert solar radiation
into energy, specific capital in form of PV cells is necessary. This cdpitaicumulated by investments
Is(t) and depreciates by a factds. The capital accumulation function in our model reads as follows:

Ks(t) = Is(t) — 3sKs(t).

Given the available capital at each time and the current supply of glathatian, renewable energy is
generated as
Es(Ks(t),t) = (vsir?(tm) + 1)Ks(t)n,

wheren is the degree of efficiency (cf. Deshmukh and Deshmukh (2008) anthN¢ al. (2009)). For
common PV cells that are currently on the markeis about 20%. Note that this function explicitly
depends on timewhich therefore makes the problem non-autonomous.

Since the representative energy sector decision maker is assumed &xhat/éformation about the
required energy demarttland no further uncertainties are included, it is postulated that the demand has
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to be completely satisfied with the portfolio of fosSH (t) and renewabl&g(Ks(t),t) energy. Shortfalls
are not allowed while surpluses are possible. However, as we do hadéthe possibility of storage,
this implies that surpluses are lost and cannot be further tis€bis balance is included in the model
by the mixed path constraint

Er (t) + Es(Ks(t),t) —E > 0.

In order to include the aspects of learning by doing, we first make somengtisns about the func-
tional form of the learning curve. While equation (1) only is defined foirdifial cumulative capital
stock ofKg > 0, we enlarge this by allowing also a complete start with renewable energypingea
Ko = 0. To do so, we follow Berglund andd8erholm (2006), who present a learning curve formula
without explicitly modeling the initial cumulative capital. Further on, we add antiaél term e
defining the initial investment costs when the cumulative capital stock is zedmree in Hartley et al.
(2010). The new learning curve then reads as

G =Co(K+£) 7,

where the initial investment costs are given as

Co=Is(t) <b+cls(t)).

Note, that we distinguish between linear investment and quadratic adjustosst where the latter
ones arise from installation efforts (cf. Feichtinger et al. (2006); Rasem(2001)). The specification
of the learning curve implies that a rapid increase in the renewable ermpgglcstock is costly, which

is relevant for the speed of the economy’s switch to renewable energrag®on (cf. Rasmussen
(2001)). Given the current market price for fossil enepgy the representative energy sector decision
maker determines the most cost-effective solution by minimizing total experslgiven by investment
costs in renewable energy capital and import costs for fossil eneggyce the total costs read as

C = lg(t) (b+clg(t)) (Ks(t) +E)7a + peEg(1).

Summing up, we consider a hon-autonomous optimal control model with infinfizomo two
controls representing the capital investments and the imported fossil eapdyyne state describing the
capital stock. This cost minimization problem is transformed to the equivalexitmization problem

1in practice, of course, small surpluses generally would be tradedeoméinket. However, in times of great surpluses as
it sometimes occurs around Christmas, prices often turn negative alsicitomes along with great losses. Therefore, we do
not further include the trading aspect in our model but consider sissle$an form of sunk investment costs.



_max [ <1s(t) b+ aist) (Kst) + &)~ peEe(t) ) 2

st Ks(t) = Is(t) — dsKs(t), (2a)
Er (t) + Es(Ks(t),t) —E > 0, (2b)
Es(Ks(t),t) = (vsir?(tm) + 1)Ks(t)n, (2¢c)
Er (t).1s(t) > 0. (2d)

4 Solution

4.1 Canonical System and Necessary First Order Conditions

Let (K&(t),14(t),EE(t)) be an optimal solution of the control problem in (2), then, according to Pon-
tryagin’s maximum principle for infinite time horizon problems (cf. Grass et24108)), there exists a
continuous and piecewise continuous differentiable funcii@n € R and a constamg > 0 satisfying
forallt > O that

(A0, A1) # O,

A (Ks(1), Ex (1), 15(1), A (1), Ao, t) max A (Ks(t),Er (1), 1s(t), A (t), Ao, 1),

Er(t),ls(t) eQ

where.# defines theurrent-value Hamiltonian® which reads as
H (Ks,Er, 15,4, A0,t) = Ao (—(bls(t) +cls(t)?) (Ks(t) + &)~ — PeEr(1)) +A () (Is(t) — dsKs(t)),
andQ is the feasible region determined by the inequality constraints (2b) and (2ddnalyze this
model, we therefore consider thagrangian (augmented current-value Hamiltonian) which reads as
E(KS> EFv IS7/\ 7)\07 Il17 u27 u37t) = /\0 (_(bIS(t> + CIS(t)z)(KS(t) + 8)7(1 - pF EF (t))
+A () (Is(t) — BsKs(t)) + pa (t) (Er (t) + (VSirP(tm) + T)Ks(t)n — E) + pa(t)Er (t) + pa(t)Is(t).

p(t), p2(t) andus(t) are the Lagrange Multipliers for the mixed path constraint and the nortiviega
conditions, respectively. Further on, at each point where the comtrelsontinuous,

0.2 (Ks,Er,ls,A, Ao, U1, U2, U3, t)
0Ks

At)=rA(t)—

is given and the complementary slackness conditions,

() (B () +ES(KED.) ~E) = 0, m(t)>0,
HOED) = 0, )0,
w1 = 0, pat) =0,

have to hold. Further on, we require the limiting transversality condition

limA(t)e ™ =0,

t—o0

2Note that from here on we often omit the time argument in the function aggtsrior the ease of exposition.



to be satisfied. It can be proven that without loss of generality we cdiorstite subsequent analysis
Ao = 1. The necessary first order conditions and the adjoint equation theyivan as follows:

d(éit) = —Pr (D) + () =0,
s~ BIKs()+) =2 (Ks(t) +) 7+ A0+ a(t) =
& lg(t) = (Ks(t) +£)G(A2E:[) + ps(t) — b7
At = A(t)r_ddKi) = (r+39)A (t) — a(b+cls(t))Is(t) (Ks(t) + &)1
—p1(t)n (vsird(tm) + 1),

which yields the canonical system as

ko) = (KSOEEEEOTIBOIZD g = 1450t Ksl0) A1), )
A = a(KS(t)+£)—a_1(bz—(KS(t)Jrs)jz (A () + ps(t)?
—PEn(VSIMP(T) + 1) + A (t)(r + 86) = 4 (£, Ks(t), A (1)) (@)

One can easily show that a solution path within the boundaries of the modelingebat both con-
trols are positive and the mixed-path constraint of (3) is satisfied with itiggueever can be optimal.
The reason lies within the linearity of the Lagrangiangg(t) and that the partial derivative of the
Lagrangian with respect & (t) is negative, which yields a bang-bang solution where the maximum is
reached at the lowest feasible contEgl(t). Hence, the cost of inefficient surpluses could immediately
be reduced by decreasing the amount of fossil energy until either, thegimpath constraint is satisfied
with equality or the fossil energy amount gets zero, which both correispimboundary cases. There-
fore, we can completely omit the inner solution and focus for the followindyarsaon the feasible
boundaries. In total, we can distinguish between three of them, the fossiMdth no investments in
renewable energy capitdir (t) > 0, Is(t) = 0 andEr (t) + Es(Ks(t),t) — E = 0,2 the mixed case where
both types of energy are used for the coverage Wlt), Is(t) > 0 andEg (t) + Es(Ks(t),t) —E =0,

and the renewable case, where no more fossil energy is used in addigmewable energy to cover the
demand, meaning th&-(t) = 0, Is(t) > 0 andEs(Ks(t),t) — E > 0 holds. Inserting the corresponding
values for the Lagrange multipliers yields the three different canonisésys, with the fossil case as

Ks(t) = &Kl ®
A(t) = A(t)(r+0s)— pen(vsinf(tm) + 1), (6)
the mixed case as
Ky = MOESIEITD ), )
Aty = O{(Ks(t)+g)a1<b2_(KS(t)4‘g3)za)\(t)2>
—Pen (vSIP(tm) + 1)+ A (t)(r +Js), (8)

3Note that for the fossil case the generated renewable ey@s(t),t) still is included in the energy balance equation.
This is because renewable energy at the beginning of the path could stifibcte to the portfolio if there is an initially
positive capital stock. As no further investments are done, howeesratital stock will decline over time and the contribution
of renewable energy gets negligibly small in the long-term. If, in contthstinitial capital stock is zero, the contribution is
zero along the whole path.



and the renewable case as
A(t)(Ks(t)+€)9—b

KS(t) - % _ 5SKS(I), (9)
)\(t) = a(KS(t)+£)—a_1 <b2_(Ks(t)4—(|:— 8)20’)\ (t)2>
+A(t)(r + ds). (10

4.2 Periodic Solution

As the canonical system in (3)-(4) is not only non-autonomous, butditiad also periodic with period
length 1, it therefore belongs to a special class of hon-autonomoueedifi@ equation systems, also
called one-periodic differential equations. Consequently(tif is a solution of the canonical system,
alsox(t + k) for every integek is a solution. Due to this periodicity in the dynamics, a candidate for the
optimal long-run solution of the problem in (2), which is the solution to whichhematimal solution is
converging to over time, is given by a periodic solution with the period lengtinefyear. In order to
find such candidates, we first determine the instantaneous equilibrium (@dints et al. (2003)), which
are calculated for the general canonical system in (3)-(4) as the sohitithe differential equation
system

Ks(t) = f(t,Ks™(1),A"="(1)) =0,
A) = PHEKER),AE () =0

To find the periodic solutions of this model, we then use these instantaneailibreeosu points as
starting solution for the boundary value problem

Ks(t) = *S(t,Ks(t),A (1)), with Ks(1) = Ks(0),
Alt) = FA(t,Ks(t),A (1)), with A (1) = A (0),

which yields the periodic solutiofKg(t),A*(t)) that lies completely within one of the three boundary
cases. However, it can happen that the solution at some point leavesritbatdeasible boundary
before the course of the period of one year is run through. In thisaaseannot find a closed periodic
solution within this feasible area and one has to switch to the correspondingical system to get a
periodic solution existing of several arcs. Therefore, a multi-point dagnvalue problem has to be
solved. At each point of time where the constraints of the current reg®nialated, a switch to the
proper region happens, meaning that the according canonical systesadgo continue the solution.
For n switching timesry, ... T,, which satisfy

T0:=0<T1<To<- <Tn1<Tnh<l= Tni1,

n-+ 1 arcs have to be calculated for which the continuity at each switching time h@sgoaranteed.
We introduce an index
1, for the fossil region
8 = < 2, for the mixed region
3, for the renewable regign

that distinguishes the canonical systems for the three boundary caseibee in (5)-(10) for each arc
i withi=1,...,n+1. For the numerical solution of the system, for eachiard we use the time
transformation

T(S)=(ti—Ti—1)(S—1)+T

so that it can be solved with fixed time intervéis- 1,i]. We then have to solve far=1,...,n+1,
j=1,...,n,s€[i—1,i], and the switching timesg with 1o = 0, 7,1 = 1 the multi-point boundary



problem

Ks (s) = (1i — Ti-1) f53(T (), K (9), Ai(9)), (11)
Ai(s) = ( *Ti 1) fa (T(9),Ks(9),Ai(9)), (12)
(Ks (1)),A1(1))) = (Ksp12 (1)), Aj4a(T7) (13)
(Ks,(1),A ( )) (Ks(0),21(0)), (14)
c(aj,aj;+1) =0. (15)

Equations (13)-(14) ensure that the continuity in state and controlslaseaich is given and, as a pe-
riodic solution is calculated, the beginning and the endpoint coincide. Equ@ty) finally guarantees
the necessary condition that the Lagrangian is continuous as well. Thigioaris dependent on the
involved regions as well as on the direction of the switch and is givep$of,... ,nas

(Ks (1)) +€)9Aj(1)) —=b=0, if {a,aj+1} € {{1,2},{2,1}},

o8 a1) = {ES(KSJ (1)), 1)) —E =0, it {a), a1} € {{2,3},{3,2}}.

4.3 Stability

In order to analyze the dynamic behavior of an obtained periodic solltigrof the canonical system
(3)-(4) with period length 1, we calculate the monodromy matrix as the pringipaix solution of the
variational equation

y = Jby,
o = (5 9).

wherel(t) is the Jacobian matrix evaluated at the periodic solutign,
I = ( oI ) (M)
oKs oA

Determining the Jacobian matrix for the fossil case yields

) = <_(?S rf55> ’

and hence the monodromy matrix

es 0
M= — ( . eHaS) , (16)
with the eigenvalues
a=e% eg=d 17)

The eigenvalues of the monodromy matrix reflect the stability of the periodit@oldetg,i=1,....n
be the eigenvalues of the monodromy matrix and let

ti={ila|<1}, n ={i:le|>1} (18)

be the sets of the stable’() and unstabler(") eigenvalues, a periodic solutidrit) is called of saddle-

type if
In*|n"|>0 (19)



holds, which means that at least one of each type has to exigt |If= 0, the periodic solution is
unstable (see Grass et al. (2008)). Further on, if no eigenealsd., i € {1,...,n} occurs, it even is
a hyperbolic cycle which guarantees that the behavior of the systenthigaeriodic solution can be
fully described by its linearisation (see Hale and Kogak (1991)). Asdd < 1 andr + ds > 0 always
holds, this implies that every fossil solution that can be found is of sadgke-tyalculating the Jacobian
matrix for the mixed and the renewable case yields

s+ or(Ks(t)+2"':)"’1A () (Ks(t)+£)*

c 2c
J(t) =

_ Of(Ks(t)+€)76'72(b2(1+(jk):+(U*l)(Ks(tH»S)za/\2) [ 58_ a(KS(t)Ei)a—lA (t)

Note, that here the Jacobian matrix and therefore also the monodromy matniatandependent of the
periodic solutiorT (t). Consequently, a general statement on the stability of the mixed and rdaewab
periodic solutions is not possible.

4.4 Numerical Continuation of Optimal Paths

In order to calculate a trajectory starting at an initial capital stdgknd leading into the optimal long-
run periodic solution that completely lies within one of the feasible boundaigme, one has to solve
fort € [0, T] the boundary value problem

Ks(t) = fS(t.Ks(t),A (1), (20)

A = fFALAQ), (21)

Ks(0) = Ko, (22)
_ / KS(T) _ K*(O)

o = #((55)-(9)) @3)

where the matri is spanning the orthogonal complement to the stable eigenspace (se¢2Bid93
andT is the truncation time of the path. The condition in (23) guarantees that the so&utds on
the linearized stable manifold to which the veckors orthogonal (for a more detailed analysis of the
so-called asymptotic boundary condition see Lentini and Keller (1980)).

5 Results

We set for the following analysis the parameters as summarized in Table lingthe canonical

Interpretation Parameter| Value || Interpretation Parameter Value
Investment costs b 0.6 || Depreciation rate Os 0.03
Adjustment costs c 0.3 || Initial investment costs £ 1
Energy demand E 2000 || Degree of efficiency n 0.2
Fossil energy price PF 0.051 || Maximal radiation increment v 4.56
Discount rate r 0.04 || Minimal radiation in winter T 0.79
Learning coefficient a 0.25

Table 1: Parameter values used for the numerical analysis.

system for these parameters yields three periodic solutions, where lomg®éo the fossil case with
zero investmentks(t) = 0 and a fossil energy amouBt (t) = E, and the two other ones correspond to
the mixed case with both controls greater than zero. The first one of the pexiedlic solutions is with
high investments and therefore with a high capital stock and the second witk Iswer investments
and a lower capital stock pretty close to the fossil periodic solution. Their¢omé-ol paths are shown
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Figure 2: Time-control paths for the three detected periodic solutey®enewable energy investments

Is(t),
b) Fossil energyEg(t).

in more detail in Figure 2, where Figure 2a corresponds to the renewadrigyeinvestmentks(t) and
Figure 2b to the fossil energy amougt (t). The latter one points out the big difference between the
two mixed periodic solutions during the summer period. Due to the higher cajmtd ef the high
mixed periodic solution, the amount of fossil energy in this period stronghjirtess compared to the
lower mixed periodic solution.

As we have shown analytically in equations (16) and (17), the fossil solatiways is of saddle-
type. To investigate the stability of the other two mixed solutions, we calculate thavailyies of the
monodromy matrix, which shows that the lower mixed solution is an unstable,fatiile the higher
one is also of saddle-type. The solutions are shown in Figure 3 and togégtheéhe corresponding
eigenvalues, are summarized in Table 2.

Mixed Solution
(saddle)

Mixed Solution
(unstable) 0.92

0.07 0.91

0.065 30.674 30.678

0.4r 0.06

0.3- 0.055 i
2.08 2,082
0.2F ]

0.1 i

orX— Fos§il Solutiop (saddle)‘ E

Il Il Il
0 5 10 15 20 25 30
Ks(t)

Figure 3: The three detected periodic solutions in the state-control space.

Summing up, we have two periodic solutions being of saddle-type whosg @frattraction prob-
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Solution K&(0) 15(0) E~(0) Eigenvalues | Objective function (in 18)

Fossil 0.0000 | 0.0000| 2000.00| {0.9704, 1.0725 -2.4500

Mixed low 2.0797| 0.0623| 1999.67| {1.0182+0.0645i, -2.4491
1.0182-0.0645i

Mixed high || 30.6739| 0.9201| 1995.15| {0.9827, 1.059}1 -2.4351

Table 2: Multiple periodic solutions fgor = 0.051.
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Figure 4:a) Overlap of trajectories leading into the two periodic solutidmsindifference threshold
point: Intersection of the objective function values.

ably are separated by an indifference threshold point induced by 8tahia focus in between. Indif-
ference threshold points are points in the state space at which the pating lesol different optimal
long-run solutions have the same objective value. Therefore, at thhegs pne is indifferent between
the two solutions. For more detail on indifference threshold points see @trat (2008), Kiseleva and
Wagener (2010) and Kiseleva (2011).

5.1 Calculation of the Indifference Threshold Point

Whether such an indifference threshold point exists or one of the tvimdiesolutions being of saddle-
type is dominant has therefore to be analyzed. To do so, we continue jedrees of both periodic
solution as far as possible until one of the subsequent cases occtirs:cbntinuation process aborts as
the path reaches some feasible boundary, 2. the path is bending backhewother periodic solution is
reached. The results of these continuations can be seen in Figureedpathtstarting at the high mixed
periodic solution is bending back while the one starting at the fossil periatlitien gets infeasible
at some point. To find the indifference threshold point, the objective fumetidues along the two
paths are compared to observe whether there exists an intersection. &sathiged model is non-
autonomous, however, the comparison of the objective function valuesisne invariant. Therefore,
not the objective function values along the last paths of the continuaticegses but the last objective
values of the paths at each continuation step for the current state valedchbe considered. The
objective value curves for the two periodic solutions are shown in FigoreTée intersection yields
the indifference threshold point, which for the current parameter seiﬂlégp =1.6477.

5.2 Economic Interpretation of the Indifference Threshold Pant

The occurrence of an indifference threshold point is an importanttressthis analysis as the optimal
long-run periodic solution depends on the initial capital stock with which optitoizés started.
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Figure 5 shows how the indifference threshold point separates the @frattraction of the mixed
and the fossil periodic solution. If the initial capital stock exactly lies on théferénce threshold
pointK{TP, the paths to both periodic solutions are equally expensive and thetieéodecision maker
is indifferent between increasing investmeis&) and moving towards the mixed periodic solution
with a higher capital stock and therefore a lower fossil energy amouimigithe summer period on
the one hand, and stopping investments and moving towards the fossilipesadation where all the
energy demand is covered with fossil energy on the other hand. If thd g@péal stock is higher than
the indifference threshold poit{'", it is optimal to move up towards the mixed periodic solution,
if it is lower, the fossil long-run periodic solution is optimal. The reason fig thange lies within
the learning by doing effect. If the initial capital stock is high enough, tdecton of the investment
costs due to the learning by doing effect can compensate the cost of additapital accumulation and
therefore it is optimal to increase the capital stock, which even enforiesffact but at a decreasing
rate. If, however, the initial capital stock is low, the learning by doingatféa the investment costs
is too weak to compensate the costs for additional capital accumulation. faiteerié is profitable to
reduce investments and hence the capital stock and increase the dloam @hergy used to cover the
energy demand until finally, the fossil optimal long-run periodic solutionashed. This initial state-
dependent separation of the areas of attraction is also known as hisfpendence, as the optimal
long-run periodic solution is determined by the accumulation effort forwab& energy capital in the
past.

This result points out the difficulty of introducing a new energy technolotytime market. While
conventional energy types already are competitive and have low prigesodthe high experience
accumulated over years, the investment costs for new technologiesrgreigle. As no experience
exists at the beginning, these high investment cost would have to be paid@mwe period of time
during which the new technology definitely is not profitable until finally attieasne reduction due
to accumulated experience is archived which would be the very first stépedong way towards the
break even point. This aspect underlines the importance of subsidiestardind of financial support
that is necessary during the starting-up period to help new technologieshis barrier. In our model
approach, where no such subsidies are included, it therefore weuld be optimal to start with the
renewable energy technology from the very beginning. If no expegiexists to reduce the initially
high investment costs, fossil energy always is less cost intensiveaando further restrictions are
included like CQ performance standards for example, no switch to a cleaner energpleghrvould
happen. Only, if there is already a sufficiently high level of experienlcennoptimization is started,
further investments are profitable.

5.3 Breakeven Analysis

As accumulated experience improves the technical processes anddéenoes the necessary financial
effort, the technology gets more profitable. However, it can take a long tirtilefwll competitiveness
with the conventional technology is achieved, which happens at thellso-baeak-even point.

To analyze the extend of the learning by doing effect on the investmetd tosur model, we
compare the costs of renewable energy generation with the fossil garergyr along the path leading
into the optimal long-run periodic solution. The investment costs per unitradrgged renewable energy
at this time is given by the term

(bl§(t) +clg(t)?) (K(t) +&) @
(vsiré(tm) + 1)K&(t)n

: (24)

whereK{(t) andl(t) are the state and the control along the path leading into the optimal long-run
periodic solution. The results can be seen in Figure 6. As the generatienafable energy fluctuates

in time with the available global radiation and occurs in the denominator of equ@ddnthe invest-
ment costs also vary over the period. However, a clear decreasingntgndan be observed as soon

13



0.9r

0.7

0.5

Is(t)

0.4r

0.3r

0.2

Indifference Treshold Point

0.1

0 TP _ 10 15 20 25 30
KLTP — 1.6447 Fos()

Figure 5: Indifference threshold point and the separated areasasftaitr of the two periodic solutions.

as capital is accumulated. The black horizontal line in Figure 6 shows tee éorgy pricepr. At
the beginning of the path, the investment costs are very high, especially tervhey are almost the
eight-fold of the fossil energy pricee. The reasons for this are the initially high investment costs of
the renewable energy technology together with the low initial capital stockande the low amount
of generated renewable energy. In summer, however, one can $e¢leetliaestment costs are lower
as global radiation is high and therefore more renewable energy isajederVery early along the
path even the fossil energy price level is reached during summer. Asatheppoceeds, investments
accumulate new capital and therefore the learning by doing effect assvéie generated renewable
energy increases. This leads to declining price levels both in winter and suamah@lso the margin
between these two decreases until finally, the optimal long-run periodit®ola reached. Here, the
price level in summer is already far below the fossil energy price level vilminter it is still above

it. However, over the year the benefit of the portfolio mixture is high endadét the combination of
fossil and renewable energy be optimal.

6 Bifurcation Analysis

The analysis of the previous section has shown that the learning by difétg ean imply history
dependence of the optimal long-run periodic solution. The driving ffocthis dependence is given by
the cost-effectiveness of renewable energy generation with respsmtventional energy technologies.
However, there are several factors beyond historical capital adatiotuactivities that influence this
cost-effectiveness. First of all, of course, the fossil energy guicelays a major role, reflecting the
economic performance of the fossil technology. Further on, it is estbatiestrong the cost decreasing
influence of the learning by doing effect is on the investment costs oivarie energy. Besides that,
also the performance of the renewable energy generation is important, ilietermined for example
by site specific factors as for example the supply of global radiation. atyz® how the obtained
results of the previous section change when these factors vary, wleatdn this section a sensitivity
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Figure 6: Investment costs per unit of generated renewable energythl® path leading into the mixed
optimal long-run periodic solution.

analysis with respect to the fossil energy prge the learning coefficientr and different sets of the
parameters andv that determine the site specific global radiation intensity.

6.1 Fossil Energy Pricepr

In the first step, we focus on the influence of the fossil energy pri¢keaptimal portfolio composition.
We use numerical continuation with respect to the fossil energy peide investigate how the results
change when fossil energy gets more expensive. Note, that we satwangider in the following the
bifurcation of the canonical system, not of the optimal system. There&tse,the changes in the
unstable as well as the dominated long-run periodic solutions are shovenre$ults can be seen in
Figure 7, where the starting poirtg(0) of the periodic solutions are plotted as gray line for the fossil
solution and as black line for the mixed solutions. If the fossil energy prieerig low, there exists
only the fossil periodic solution as the opportunity costs of investments intwadrie energy capital
are so high that they are not profitable and hence no investments at dbregeand the whole energy
demand is covered only with fossil energy. Starting at a fossil enerige pf pr = 0.0446, there
exists also the two mixed periodic solutions, where the lower one is unstabkbaewgper one is of
saddle-type. The areas of attraction of the fossil and the upper mixextijgesolutions are separated
by indifference threshold points summarized in the indifference threshiole plotted as black dotted
line. At the beginning it lies above the unstable mixed long-run solution. Asilfesergy in this
area still is comparatively cheap the historical renewable energy capdairalation efforts have to
be very high in order to make further investments in renewable energy lqamtaable. If the fossil
energy price further increases, the indifference threshold curedinde as renewable energy capital
investments are profitable already at a lower historical capital accumuldfan eAt pr = 0.0501,
the indifference threshold curve intersects with the mixed unstable longetiodic solution. From
then on, the areas of attraction are separated below this periodic solutign -A0.0535 it ends at
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the fossil periodic solution. For a fossil energy pric@3B5< pg < 0.0679, still all three long-run
periodic solutions exist, but the high mixed one is dominant as here fossgyealne would be too
expensive to cover the demand. The unstable mixed solution turns into a mutdation with two
mixed arcs and one fossil arc in betweempat= 0.0612, as investments decline with the fossil energy
price until they finally get zero. This first happens during the winter peribile during the summer
period investments are still positive. As one can see in the figure, the smistion only exist to
some specific fossil energy price. The reason for this is that the Lagnaultiplier us(t) becomes
negative. The price at which this happens is a function of #€ate) and timet and for the current
parameter set and the fossil solution is givenpas= 0.0678. For higher values gfr, however, a
fossil-mixed solution still can be feasible if the part along which the Lagrangkiplier would be
negative is replaced by a mixed arc. As soon as the Lagrange multiplieratveeglready at the point
of time whereA (t) reaches its minimum, however, also no feasible fossil-mixed solution existsh) whic
is for the current parameter set@t = 0.069. For fossil energy pricgs > 0.069, the optimal long-
run periodic solution is given by the high mixed periodic solution. Figure Qushwhat happens if
the fossil energy pric@r increases even beyonddd. As renewable energy generation progressively
gets profitable due to the reduced investment costs by the accumulateigespas well as compared
to the more expensive fossil energy, a strong increase in renewadigyegeneration capital can be
observed. However, still both energy types are needed over the whdled in order to cover the
given energy demand. Aftr = 0.5613, renewable energy generation capital is so high that during
summer, when global radiation reaches its maximum, the demand even carebedcaithout fossil
energy. At this point, the feasible boundary of the mixed case is reacttett@an this fossil energy
price on a periodic solution exists that consists of two mixed arcs and a ableearc in between.
Figure 8 shows such a mixed/renewable solution in more detail for a fossiyeprice ofpr = 0.8.
Along these mixed/renewable solutions, the demand over some time interval in susnooered
only by renewable energy, while in winter fossil energy still is needed ditiad. If the fossil energy
price increases even more, there is still an increase in the stock of relieesveergy capital, however,
obviously at a decreasing rate. The reason for this is, that the marginafibof an additional unit
of renewable energy capital declines. Remember, that generatedsasplelyond the energy demand
cannot be used as storage is not included in the model. Therefor¢herfuncrease of the capital stock
only is profitable along the mixed arcs, where the necessary amountsiifdogrgy can be reduced
by slightly increasing renewable energy generation. But as the glotiiakicn at the switching times
between the arcs gets lower, the closer they are to 0 and 1, more and menalée energy capital
is necessary to compensate. Although the investment costs of renewealdg eapital decline with
the increasing capital stock and reduce at least the financial effahifocompensation, this saturation
effect occurs.

Figure 7 further on shows that a turning point occurp@at= 0.044 in the mixed solution. To in-
vestigate how the optimal vector field changes here, we consider the &talibr of the monodromy
matrix in what follows.

Figure 10 shows the norm of the eigenvalues of each long-run periolditas along thepg-axis.
The eigenvalues belonging to the fossil long-run periodic solution akerstmodark gray. As we already
have shown in Section 4.3, the monodromy matrix and hence the eigenvammgsfoksil solution are
independent on the periodic solution itself as no state nor co-state ocdhesJacobian for this case.
Hence, the eigenvalues of the fossil long-run periodic solution in Fighigrd constant over the fossil
energy pricepr and are given ag; = e %, e, = €1%, As one eigenvalue lies within and the other
one outside the unit circle, which in the figure is plotted as black horizontalthedpssil solution is of
saddle-type over its whole interval of existence. The probably most stiegeresult can be observed
for the mixed solutions. The eigenvalues corresponding to the upper mixgdula periodic solution
are shown in Figure 10 as black line, where again one is lying within and ttee otte outside the
unit circle which specifies the solutions to be of saddle-type. The lowera$sl fenergy pricepg,
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the higher gets the stable eigenvalue until finallypat= 0.044, it crosses the unit circle. Hence, a
fold-bifurcation occurs (see for more details Reithmeier (1991)) and#fidisy of the mixed long-run
periodic solution changes from saddle-point stability to unstable. The tvemeadues outside the unit
circle are plotted as light gray lines in Figure 10. At the beginning they areesiland hence the lower
mixed periodic solution is an unstable node, but very soon they get compietha mixed periodic
solution turns into an unstable focus. p¢ = 0.0612, the lower mixed periodic solution merges into
the fossil-mixed solution of which the eigenvalues are shown as light gridgddiine. Also here, the
eigenvalues are complex and their real parts are outside of the unit aititd) specifies this solutions
as unstable focus as well.

6.2 Learning Coefficienta

As already mentioned, not only the fossil energy price plays an impoudbmihow the optimal portfolio
composition looks like, but also the reducing impact of the learning by dofiegtedn the investment
costs of renewable energy, which is determined by the learning coeffiziem literature, many re-
search papers can be found that investigate the correct heightmifigapefficients for different types
of technologies. However, opinions strongly differ. To analyze homsitige the optimal portfolio
composition is to different assumptions on the learning coefficient, we coimthis section the same
analysis as in the previous one, but this time with respect to the learningoierfé .

We fix the fossil energy price @ = 0.05 and again use numerical continuation in order to calculate
the optimal long-run periodic solutions as well as the indifference threghmius, if existent, for a
varying a. The results can be seen in Figure 11. For a learning coefficieat 0f0.2068, which
corresponds to a learning by doing ratd 8fR < 13.35%, the optimal long-run periodic is given by the
fossil periodic solution. The reason for this is the aspect that the leabyiniping effect is too weak
to compensate the initially high investment costs in order to make it profitable ta invesnewable
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energy generation capital and hence, the whole demand is covered ssithedoergy. For learning
coefficients close t@ > 0.2068, three long-run periodic solutions exists of which one is the fossil
solution and the other two are the two mixed solutions where the higher one &ldlestype and
the lower one is unstable. Indifference threshold points separate agaardhs of attraction. The
economic interpretation of this result is that the historical renewable erwangyal efforts that are
necessary in order to make renewable energy investments profitabiegdeith the intensity of the
learning by doing effect, as a lower initial renewable energy capital stoehk already is sufficient.
Until a = 0.2505, which corresponds to a learning by doing rate DR = 15.94%, the indifference
threshold curve lies beyond the unstable mixed solution. Also here, the palihdento the periodic
solution has to be continued to a mixed arc path in order to get the indiffetereshold point. For
o > 0.2505, the indifference threshold curve lies below the unstable mixed soanbfurther declines
in o until finally, ata = 0.282 and hence at a learning by doing ra@R = 17.75%, it coincides with
the unstable mixed solution. For higher learning coefficients, the mixed pesoldition dominates the
fossil one as fossil energy is too expensive to be exclusively usea/ay the demand.

6.3 Global Radiation Intensity

So far we have investigated the impact of price and learning by doingteiecthe optimal portfo-
lio composition. However, we completely have fixed site specific aspecterung the supply of
global radiation for the previous analysis. Therefore, an interestimgcasn which we focus on in the
following is, how the solutions change when geographical conditions vary

Figure 12 shows the different global radiation scales in Europe foraae3007. For the estimation
of the parameter valuesandv for the analysis so far, we have used Austrian data, which lies quite
in the middle of the scale as can be seen in Figure 12. However, how woutgdhks change if
estimations for geological sites higher in the north or lower in the south adeinstead? To do so, we
use global radiation data for Hamburg (scenario 1) as an example ofteenosite and from Athens
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Figure 11: Bifurcation diagram with respect to the learning coeffiaent

(Scenario 2) as an example for a southern site, marked as red circlesuie Ey (source of data see
SODA (2014)). Figure 13 shows the average daily global radiation fomblrg and Athens from
1985-2004. Comparing this with the global radiation data of Austria showrigiar& 1a, the strong
differences immediately get obvious. While the radiation in winter for Hambuegsthan the half of
the one in Austria, the radiation in Athens at this time of the year is around 508éthign summer,
the global radiation in Athens rises up to around 7 kWh/while in Hamburg it reaches only around
4.3 kWh/n?. Given this data, we estimate the parameter vatuasdv for these two new scenarios,
respectively. The results are summarized in Table 3. Further on, Figushdws the deterministic
functions for Scenario 1, Scenario 2 and also the original estimates &iriduvhich we already have
used for the previous analysis.

T v
Austria 0.79 | 4.56
Scenario 1| 0.21 | 4.08
Scenario 2|| 1.35| 5.64

Table 3: Estimates for andv.

In order to investigate the changes in the optimal portfolio composition whenpsitéfis parame-
ters change, we conduct the same sensitivity analysis with respect teHiesfeergy pricgg, as done
in Section 6.1, and compare the different outcomes.

6.4 Sensitivity Analysis for Scenarios 1 and 2

Figure 15 shows the results of the sensitivity analysis for scenarios 2,aedpectively, compared to
the results we have obtained for the parameters estimated for Austria.
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Figure 13:a) Average daily global radiation in Hamburg (Scenarioli) Average daily global radiation
in Athens (Scenario 2).
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First, we focus on Scenario 1 with a less intensive supply of global radiatioshows that the
gualitative behavior is the same. For a low fossil energy price, only tisl fadution exists, while at a
specific point the two mixed solutions, with one being unstable and the othdreimg of saddle-type,
occur and the areas of attraction are separated by indifferencedhtgstints. However, a look on the
price axis makes clear that remarkable changes concerning the positehdygpened. While the first
bifurcation point at which these two additional mixed periodic solutions exiatsbeen gbr = 0.0446
for the original set, this happens herepat= 0.0609. Although the intensity of the learning by doing
effect is the same and therefore the investment costs per unit capital declide at the same speed,
the lower global radiation supply leads to a lower renewable energy af@reand hence, to higher
investment costs per unit of power. This aspect shifts the interval in vihemixed periodic solutions
as well as the indifference threshold curve exist, to the right as the tssigy price has to be much
higher in order to make further investments profitable. Consequently, agwitte level at which the
high mixed solution gets dominant and fossil energy as single source totbevdemand is not further
optimal, has shifted to the right. For the original parameter set this happpps-a0.0535, while here
the price level for this is much higher pt = 0.0739. Finally, atpg = 0.091 the optimal long-run peri-
odic solution is given by the high mixed periodic solution. Furthermore, theslojph which the high
mixed periodic solution increases with the fossil energy price, is lower cradga the basic scenario
for Austria. The reason for this is given by the fact that due to the lovadragradiation less renewable
energy can be generated and, hence, the optimal renewable enpitgy stack is lower at the same
fossil energy price. Additionally, one can see that also the interval gegesrlan which the indifference
threshold curve separates the areas of attraction of the two periodic sslbgong of saddle-type. This
is because also the capital stock, at which the mixed periodic solution stadmioate the fossil one,
is reached at a higher fossil energy price.

Second, we investigate Scenario 2 with a higher intensity of global radi&lea.for this case, the
qualitative outcome does not change, but again the price boundariessrecial interest. While the
interval, in which all three long-run periodic solutions exist and the aradtiction is separated by an
indifference threshold point, started@t = 0.0446 in the original set and @t = 0.0609 in Scenario 1,
one can observe from Figure 15 that this here happens alreqgdy-a0.0328. As the supply of global
radiation is higher, the investment costs per unit of power for an eqpéatatock here are even lower
than for the other two cases. Hence, investments into renewable enempfifable already at a lower
fossil energy price. For this reason, also the indifference threshuwle dhias shifted to the left. The
high mixed solution in Scenario 2 gets dominanpat= 0.0449, a price at which in the original set a
mixed portfolio just starts to be an alternative to the pure fossil one, not ttigneBcenario 1 where
this possibility does not exist at all at this price level. Startingrat= 0.0495, the high mixed solution
is the optimal long-run periodic solution. Here, the slope, with which the highdmegiodic solution
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increases with the fossil energy price, is higher compared to the basiarsréor Austria. Due to the
higher global radiation more renewable energy can be generated acel laehigher renewable energy
capital stock is profitable already at a lower fossil energy price. Quesgly, the interval in which
the indifference threshold curve separates the areas of attractiontefdhperiodic solutions being of
saddle-type, gets smaller as the capital stock, at which the mixed periodiosalith research starts
to dominate the fossil one, is reached at a lower fossil energy price.

Scenario 1

Fossil
Mixed _ i
Fossil/Mixed -=--
Indifference e i
threshold curve

Areas of attraction— ~ -
are separated

1 L 1 1
0.07 0.08 0.09 0.1

Figure 15: Bifurcation diagram with respect to the fossil energy ppicéor the scenarios 1 and 2 in
comparison with the results for Austria.

Varying the intensity of the site specific global radiation has shown some stitegaspect. While
in all three cases, the original parameter set as well as the two scetiagiogensity of the learning by
doing effect is exactly the same, the outcomes and their possible consegdi@npolitical decisions are
completely different. While for southern countries, the inclusion of reldsvanergy into the portfolio
happens quite early along the fossil energy price axis where possiltleigtaubsidies could help to
induce the switch to the mixed portfolio if the accumulated capital stock is below thiffeience
threshold curve, for the northern countries the fossil energy prisetfas to increase enough to make
such subsidies even reasonable. Another interpretation could be gwblpaaxes on fossil energy
would have to be much higher in order to induce this shift in these countrias.afBthe supply of
global radiation is lower, the profitability never will be the same as for sontbeuntries.

7 Conclusions

We have investigated in this paper how a small country’s optimal compositiopatftflio consisting
of fossil and renewable (solar) energy looks like when the effect aniag by doing reduces the
investment costs due to accumulated experience. Modeling the problenoasaatonomous optimal
control model, we have included a one-factor log-linear learning cutadhie objective function so that
the accumulated renewable energy capital, which is supposed to reflectliteted experience, has a
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diminishing impact on the investment costs. Further on, we postulated ségs@mgng renewable
energy supply and a well known energy demand that has to be covered.

Sensitivity analysis with respect to the fossil energy ppeeéhas shown that there exist price inter-
vals in which multiple periodic solutions occur, whose areas of attractiornepaated by an indiffer-
ence threshold point. Further on, it turns out that these results arelyatansitive to the fossil energy
price but also to the intensity of the learning by doing effect as well as ogrgphical conditions
concerning the global radiation.

The occurrence of an indifference threshold point yields importargcasgor the economic in-
terpretation of the obtained results. We have seen that whether investmenteriawable energy
generation capital are worthwhile or not depends on the initial capital s to this history depen-
dence, investments into renewable energy generation from the verynbegimever would be optimal
in our approach as the initial investment costs are too high. The level o&thealstock at which such
investments get profitable shifts even further up if global radiation is loagefor the northern coun-
tries, or if the learning by doing effect is weaker, meaning that the leanwatjicient is assumed to be
lower. One important conclusion of these results is, that financial suppfmrm of subsidies during
the starting up period of a new technology could play a major role for theessfid introduction of this
technology into the market. The profitability, however, strongly dependkesite specific conditions.

Experience in this approach has been the driving force for the reduatimvestment costs. But
this is not the only source for technological learning. Of course alsgarek and development efforts
could foster the competitiveness of a new technology, which implies accumutztknowledge and
hence an additional reduction in investment costs. The extension of thd witldéhis aspect will be
of special interest in one of our future works.
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