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Abstract

Given the constantly raising world-wide energy demand and the accompanying increase in green
house gas emissions that pushes the progression of climate change, the possibly most important task
in future is to find a carbon-low energy supply that finds the right balance between sustainability
and energy security. For renewable energy generation, however, especially the second aspect turns
out to be difficult as the supply of renewable sources underlies strong volatility. Further on, invest-
ment costs for new technologies are so high that competitiveness with conventional energy forms
is hard to achieve. To address this issue we analyze in this paper a non-autonomous optimal con-
trol model considering the optimal composition of a portfolio consisting of fossil and renewable
energy in order to cover the energy demand of a small country.While fossil energy is assumed to
be constantly available, the supply of the renewable resource fluctuates seasonally. We further on
include learning effects for the renewable energy technology, which will underline the importance
of considering the whole life span of such a technology for long-term energy planning decisions.
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1 Introduction

Facing the impacts of climate change, the rapid economic growth coming along with ahigher energy
demand as well as the fact that one of the main contributors to the constantly increasing green house
gas emissions is given by the energy sector, the possibly biggest problemof this century will be to find
a carbon-low, sustainable and simultaneously secure energy supply. Therefore, the incentives for devel-
oping and improving renewable energy technology have changed duringthe last decades. Originally,
the driving force was given by the rapidly narrowing horizon of the depletion of fossil fuels. However,
due to the development of new extraction techniques and the discovery of new sources nowadays the
threats of global warming play a major role. Mitigation policies to support investments in renewable en-
ergy technologies try to reduce the emissions and slow down the global warming process. The available
alternatives of energy generation in the future, however, strongly depend on structural and technologi-
cal changes together with the accompanying investment decisions right now, because the development
and the diffusion of a new technology is a time-intensive dynamic process (cf. Harmon (2000)). This
underlines the importance of timely planing for energy technology choices. In contrast to conventional
energy generation, the high investment costs of renewable energy technology are the main factor con-
sidered for decision policies, which implies that investments in new technology are postponed until they
get cheaper and hence this strongly restricts the scale of alternative energy generation (cf. Rong-Gang
(2013) and Berglund and Söderholm (2006)). Therefore, it is important to consider the whole life span
of a new technology in energy planning decisions in order to include the diffusion process and the cost
reduction that comes along with implementing the new technology. Another challenge of renewable
energy generation is that the supply of renewable sources is not constant at all but fluctuating.

To investigate this issue we consider a small country in which a representative decision maker of
the energy sector optimizes a portfolio consisting of fossil and renewable energy. We postulate for
simplicity that full information about the energy demand that has to be coveredis available and that
it is stationary, as done in Coulomb and Henriet (2011). Instead of assuming that the energy demand
depends on the GDP of the country as it is done in Chakravorty et al. (2012) or on the electricity price,
we follow Messner (1997) and consider the energy demand to be exogenous. Given this demand and
considering the fact that the supply of the used renewable sources is fluctuating seasonally, the repre-
sentative energy sector decision maker optimizes this portfolio to find the most cost effective solution.
We focus especially on solar energy and follow Chakravorty et al. (2006) in omitting completely the
possibility of storage, so that the generated energy has to be used immediatelyor otherwise is lost.

In the literature of recent years, some important developments in macroeconomics and energy eco-
nomics can be observed, dealing with the issue of technological change. While in some modeling
approaches technological change, if considered at all, has been included as an exogenous increase in
energy conversion efficiency, more recently the aim has been to endogenously model technological
change especially in form of learning by doing effects, sometimes also considered as technological
learning (see for example Chakravorty et al. (2008), Chakravorty etal. (2011), Messner (1997), Re-
ichenbach and Requate (2012), Köhler et al. (2006)). To include into our model the aspects of learning
by doing we use a log-linear learning curve to model decreasing investmentcosts as a function of
accumulated experience.

As we consider in our approach the seasonal fluctuations in the supply ofrenewable sources, this
optimal control problem with one state and two controls exhibits a particular mathematical property
by being non-autonomous. Solving this problem by applying Pontryagin’s maximum principle, we
are looking for a periodic solution that solves the non-autonomous canonical system, which makes the
problem numerically sophisticated and which differs from the usual steady-state analysis of autonomous
approaches.

The paper is organized as follows. We briefly present first the concept of learning by doing in
energy planing models in Section 2. In Section 3 we then give a detailed description of the model
formulation, while Section 4 deals with the solution of the problem. The numerical results are presented
and interpreted in Section 5. As it turns out that the optimal long-run solution issensitive with respect
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to the fossil energy price, the learning coefficient, as well as to geographical site specific parameters,
we conduct a sensitivity analysis with respect to these parameters in Section6. Finally, we summarize
our findings, give conclusions and a brief outlook on future work in Section 7.

2 The Learning Curve Concept

The development of the learning curve originates from Wright (1936) who observed that in an airplane-
manufacturing the number of working-hours spent for the production ofan airframe is a decreasing
function of the total number of the previously produced airframes of the same type. In other words,
this means that the unit costs of labor declined with experience measured in cumulative output. Later,
Arrow (1962) used cumulative gross investments in form of cumulative production of capital goods as
an index of experience so that each new machine produced and used in the production process changes
the production environment and leads to a learning process with continual incentive. There exist some
other references in the literature, however, stating that interruptions of the production process could also
cause negative learning effects, referred to as forgetting by not doing (see for example Argote et al.,
1990; Argote and Epple, 1990; Epple et al., 1991; Benkard, 2000), and, hence, rather net investments
are a better index for experience. In all different forms, the learning curve concept has been applied
in many different fields of research and has become an important tool to measure cost-effectiveness of
technologies.

Given the goal of achieving adequate technology policies to mitigate climate change, the implemen-
tation of endogenous technological change via the learning curve in modelsof future energy scenarios
is essential (e.g. see Grübler and Messner (1998) and Gerlagh and Van der Zwaan (2003)).The learning
curve provides an important tool to measure the cost effectiveness of policy decisions to support new
technologies. It connects expected future costs with current investmentsso that the cost of the new
technology depends on earlier developments reflected by the cumulative capacity. This comes along
with the path dependence of technological competition.

The learning curve quantifies empirically the impact of learning by doing on theproduction costs of
an industry or a firm by considering the investment costs as a declining function of cumulative capacity
or cumulative output, where both of these factors are an approximation of knowledge (cf. Argote et al.
(1990)). In literature, a variety of different functional forms modeling these interrelationship can be
found but the probably most common one is the log-linear function to its simplicity and its observed
good fit with data. In this case, the progressive decrease is explained by the so-called progress rate
given as

PR = 2−α
,

whereα > 0 is the learning coefficient. The progress rate corresponds to the percentage change in
costs, when the cumulative capacity is doubled. Therefore, a progressrate of 80% means that the costs
are reduced to 80% of its previous value when the cumulative capacity doubles. This reduction of 20%
is referred to as the learning by doing rate and is given by

LDR = 1−PR = 1−2−α
.

The costs then are calculated as

Ct =C0

(

Kt

K0

)−α
, (1)

whereCt are the investment costs at timet, Kt is the cumulative capacity at timet, K0 is the initial
cumulative capacity at timet = 0 andC0 are the initial investment costs. This scaling expresses that
for an initially low cumulative capacity, it takes more efforts and investments to produce a given level
of energy than for an initially high cumulative capacity (cf. Van der Zwaan et al. (2002)). Taking the
logarithm of equation (1) yields an expression which can be estimated econometrically in order to get
an estimate forα , and therefore for the learning by doing rateLDR. This, of course, strongly depends
on the type of technology and is crucial for the speed of learning (a survey on estimates of learning
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rates for a set of energy technologies can be found in McDonald and Schrattenholzer (2001)). Equation
(1) is also referred to as the single- or one-factor-learning curve.

3 The Model

To investigate the challenges of including renewable energy into a power system under the aspect of
learning by doing, we consider an economy of a small country in which both fossil and renewable en-
ergy can be used as perfect substitutes to cover an exogenously given energy demand. Due to the size
of the country we assume that there are no or at least not enough available fossil resources and therefore
fossil energy has to be imported from other countries for the current market price. As far as renewable
energy is concerned, harvesting is for free and the generation is possible within the own country. In
contrast to fossil energy, which is assumed to be constantly available, the supply of renewable energy
seasonally fluctuates. In order to use this renewable energy resource, capital is necessary for the energy
generation, for which investments have to be undertaken. We consider for our model a representa-
tive energy sector decision maker who chooses the optimal energy portfolio composition for the whole
country. It is postulated that this representative energy sector decisionmaker has full information about
the energy demand that has to be covered at each point of time. Therefore, he/she decides on the most
cost-effective portfolio consisting of these two energy types, taking into account the seasonal fluctua-
tions of renewable energy supply, the investment costs for renewable energy generation capital which
decline with experience and the import costs of fossil energy. One important implication of the size of
the country is, that the representative energy sector decision maker is assumed to be a price taker, and
therefore his/her decision has no influence on the market price.

We take the considered fossil energy as an aggregate of fossil energy sources (e.g. coal, gas, etc.),
and focus on solar energy as renewable resource. To give an example for the seasonal supply of solar
energy, Figure 1a shows the average global radiation per month in Austria. One can clearly observe
the seasonal differences that pose a challenge to a constant renewable energy supply over the whole
year. Saving, of course, would be supportive in the short-run, but as we rather are interested in long-run
solutions and for this time frame saving possibilities are limited, we completely omit storage in our
model approach and focus only on the change in the portfolio composition. To include these seasonal
fluctuations in our model, we use a deterministic time-dependent function

vR(t) = ν sin2(tπ)+ τ ,

which is plotted in Figure 1b. The period length of the fluctuation is one year,τ is the minimal supply
in winter andν is the maximal increment during summer. To get reasonable parameter values we used
Austrian data (ZAMG (2012)) for estimation. Note that we only consider annual fluctuations and do
not include daily fluctuations as well as changes due to weather conditions.To convert solar radiation
into energy, specific capital in form of PV cells is necessary. This capitalis accumulated by investments
IS(t) and depreciates by a factorδS. The capital accumulation function in our model reads as follows:

K̇S(t) = IS(t)−δSKS(t).

Given the available capital at each time and the current supply of global radiation, renewable energy is
generated as

ES
(

KS(t), t
)

=
(

ν sin2(tπ)+ τ
)

KS(t)η ,

whereη is the degree of efficiency (cf. Deshmukh and Deshmukh (2008) and Nema et al. (2009)). For
common PV cells that are currently on the marketη is about 20%. Note that this function explicitly
depends on timet which therefore makes the problem non-autonomous.
Since the representative energy sector decision maker is assumed to haveexact information about the
required energy demandE and no further uncertainties are included, it is postulated that the demand has
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(a) Average global radiation per month in Austria.
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(b) Deterministic function to describe the varying global
radiation over one year (t = 1).

Figure 1

to be completely satisfied with the portfolio of fossilEF(t) and renewableES(KS(t), t) energy. Shortfalls
are not allowed while surpluses are possible. However, as we do not include the possibility of storage,
this implies that surpluses are lost and cannot be further used1. This balance is included in the model
by the mixed path constraint

EF(t)+ES
(

KS(t), t
)

−E ≥ 0.

In order to include the aspects of learning by doing, we first make some assumptions about the func-
tional form of the learning curve. While equation (1) only is defined for aninitial cumulative capital
stock ofK0 > 0, we enlarge this by allowing also a complete start with renewable energy, meaning
K0 = 0. To do so, we follow Berglund and Söderholm (2006), who present a learning curve formula
without explicitly modeling the initial cumulative capital. Further on, we add an additional term ε
defining the initial investment costs when the cumulative capital stock is zero, as done in Hartley et al.
(2010). The new learning curve then reads as

Ct =C0(K + ε)−α
,

where the initial investment costs are given as

C0 = IS(t)
(

b+ cIS(t)
)

.

Note, that we distinguish between linear investment and quadratic adjustment costs, where the latter
ones arise from installation efforts (cf. Feichtinger et al. (2006); Rasmussen (2001)). The specification
of the learning curve implies that a rapid increase in the renewable energy capital stock is costly, which
is relevant for the speed of the economy’s switch to renewable energy generation (cf. Rasmussen
(2001)). Given the current market price for fossil energypF , the representative energy sector decision
maker determines the most cost-effective solution by minimizing total expenditures given by investment
costs in renewable energy capital and import costs for fossil energy. Hence, the total costs read as

Ct = IS(t)(b+ cIS(t))(KS(t)+ ε)−α + pFEF(t).

Summing up, we consider a non-autonomous optimal control model with infinite horizon, two
controls representing the capital investments and the imported fossil energy, and one state describing the
capital stock. This cost minimization problem is transformed to the equivalent maximization problem

1In practice, of course, small surpluses generally would be traded on the market. However, in times of great surpluses as
it sometimes occurs around Christmas, prices often turn negative whichalso comes along with great losses. Therefore, we do
not further include the trading aspect in our model but consider such losses in form of sunk investment costs.
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max
EF (t), IS(t)

∫ ∞

0
e−rt

(

− IS(t)(b+ cIS(t))(KS(t)+ ε)−α − pFEF(t)

)

dt (2)

s.t.: K̇S(t) = IS(t)−δSKS(t), (2a)

EF(t)+ES
(

KS(t), t
)

−E ≥ 0, (2b)

ES
(

KS(t), t
)

=
(

ν sin2(tπ)+ τ
)

KS(t)η , (2c)

EF(t), IS(t)≥ 0. (2d)

4 Solution

4.1 Canonical System and Necessary First Order Conditions

Let (K∗
S (t), I

∗
S (t),E

∗
F(t)) be an optimal solution of the control problem in (2), then, according to Pon-

tryagin’s maximum principle for infinite time horizon problems (cf. Grass et al. (2008)), there exists a
continuous and piecewise continuous differentiable functionλ (t) ∈ R and a constantλ0 ≥ 0 satisfying
for all t ≥ 0 that

(λ0,λ (t)) 6= 0,

H (K∗
S (t),E

∗
F(t), I

∗
S (t),λ (t),λ0, t) = max

EF (t), IS(t)∈Ω
H (K∗

S (t),EF(t), IS(t),λ (t),λ0, t),

whereH defines thecurrent-value Hamiltonian2 which reads as

H (KS,EF , IS,λ ,λ0, t) = λ0
(

−(bIS(t)+ cIS(t)
2)(KS(t)+ ε)−α − pFEF(t)

)

+λ (t)(IS(t)−δSKS(t)),

andΩ is the feasible region determined by the inequality constraints (2b) and (2d).To analyze this
model, we therefore consider theLagrangian (augmented current-value Hamiltonian) which reads as

L (KS,EF , IS,λ ,λ0,µ1,µ2,µ3, t) = λ0
(

−(bIS(t)+ cIS(t)
2)(KS(t)+ ε)−α − pFEF(t)

)

+λ (t)(IS(t)−δSKS(t))+µ1(t)(EF(t)+(ν sin2(tπ)+ τ)KS(t)η −E)+µ2(t)EF(t)+µ3(t)IS(t).

µ1(t),µ2(t) andµ3(t) are the Lagrange Multipliers for the mixed path constraint and the non-negativity
conditions, respectively. Further on, at each point where the controlsare continuous,

λ̇ (t) = rλ (t)−
∂L (KS,EF , IS,λ ,λ0,µ1,µ2,µ3, t)

∂KS

is given and the complementary slackness conditions,

µ1(t)
(

E∗
F(t)+E∗

S

(

K∗
S (t), t

)

−E
)

= 0 , µ1(t)≥ 0,

µ2(t)E
∗
F(t) = 0 , µ2(t)≥ 0,

µ3(t)I
∗
S (t) = 0 , µ3(t)≥ 0,

have to hold. Further on, we require the limiting transversality condition

lim
t→∞

λ (t)e−rt = 0,

2Note that from here on we often omit the time argument in the function arguments for the ease of exposition.
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to be satisfied. It can be proven that without loss of generality we can setfor the subsequent analysis
λ0 = 1. The necessary first order conditions and the adjoint equation then are given as follows:

∂L

∂EF(t)
= −pF +µ1(t)+µ2(t) = 0,

∂L

∂ IS(t)
= −b(KS(t)+ ε)−α −2cIS(t)(KS(t)+ ε)−α +λ (t)+µ3(t) = 0,

⇔ IS(t) =
(KS(t)+ ε)α(λ (t)+µ3(t))−b

2c
,

λ̇ (t) = λ (t)r−
∂L

∂KS(t)
= (r+δS)λ (t)−α(b+ cIS(t))IS(t)(KS(t)+ ε)−α−1

−µ1(t)η(ν sin2(tπ)+ τ),

which yields the canonical system as

K̇S(t) =
(KS(t)+ ε)α(λ (t)+µ3(t))−b

2c
−δSKS(t) =: f KS(t,KS(t),λ (t)), (3)

λ̇ (t) = α(KS(t)+ ε)−α−1
(

b2− (KS(t)+ ε)2α(λ (t)+µ3(t))2

4c

)

−pFη(ν sin2(tπ)+ τ)+λ (t)(r+δS) =: f λ (t,KS(t),λ (t)). (4)

One can easily show that a solution path within the boundaries of the model, meaning that both con-
trols are positive and the mixed-path constraint of (3) is satisfied with inequality, never can be optimal.
The reason lies within the linearity of the Lagrangian inEF(t) and that the partial derivative of the
Lagrangian with respect toEF(t) is negative, which yields a bang-bang solution where the maximum is
reached at the lowest feasible controlEF(t). Hence, the cost of inefficient surpluses could immediately
be reduced by decreasing the amount of fossil energy until either, the mixed path constraint is satisfied
with equality or the fossil energy amount gets zero, which both corresponds to boundary cases. There-
fore, we can completely omit the inner solution and focus for the following analysis on the feasible
boundaries. In total, we can distinguish between three of them, the fossil case with no investments in
renewable energy capital,EF(t)> 0, IS(t) = 0 andEF(t)+ES(KS(t), t)−E = 0,3 the mixed case where
both types of energy are used for the coverage withEF(t), IS(t)> 0 andEF(t)+ES(KS(t), t)−E = 0,
and the renewable case, where no more fossil energy is used in addition torenewable energy to cover the
demand, meaning thatEF(t) = 0, IS(t)> 0 andES(KS(t), t)−E ≥ 0 holds. Inserting the corresponding
values for the Lagrange multipliers yields the three different canonical systems, with the fossil case as

K̇S(t) = −δSKS(t), (5)

λ̇ (t) = λ (t)(r+δS)− pFη(ν sin2(tπ)+ τ), (6)

the mixed case as

K̇S(t) =
λ (t)(KS(t)+ ε)α −b

2c
−δSKS(t), (7)

λ̇ (t) = α(KS(t)+ ε)−α−1
(

b2− (KS(t)+ ε)2αλ (t)2

4c

)

−pFη(ν sin2(tπ)+ τ)+λ (t)(r+δS), (8)

3Note that for the fossil case the generated renewable energyES(KS(t), t) still is included in the energy balance equation.
This is because renewable energy at the beginning of the path could still contribute to the portfolio if there is an initially
positive capital stock. As no further investments are done, however, the capital stock will decline over time and the contribution
of renewable energy gets negligibly small in the long-term. If, in contrast,the initial capital stock is zero, the contribution is
zero along the whole path.

7



and the renewable case as

K̇S(t) =
λ (t)(KS(t)+ ε)α −b

2c
−δSKS(t), (9)

λ̇ (t) = α(KS(t)+ ε)−α−1
(

b2− (KS(t)+ ε)2αλ (t)2

4c

)

+λ (t)(r+δS). (10)

4.2 Periodic Solution

As the canonical system in (3)-(4) is not only non-autonomous, but in addition also periodic with period
length 1, it therefore belongs to a special class of non-autonomous differential equation systems, also
called one-periodic differential equations. Consequently, ifx(t) is a solution of the canonical system,
alsox(t+k) for every integerk is a solution. Due to this periodicity in the dynamics, a candidate for the
optimal long-run solution of the problem in (2), which is the solution to which each optimal solution is
converging to over time, is given by a periodic solution with the period length ofone year. In order to
find such candidates, we first determine the instantaneous equilibrium points(cf. Ju et al. (2003)), which
are calculated for the general canonical system in (3)-(4) as the solution of the differential equation
system

K̇S(t) = f KS(t,KIEP
S (t),λ IEP(t)) = 0,

λ̇ (t) = f λ (t,KIEP
S (t),λ IEP(t)) = 0.

To find the periodic solutions of this model, we then use these instantaneous equilibrium points as
starting solution for the boundary value problem

K̇S(t) = f KS(t,KS(t),λ (t)), with KS(1) = KS(0),

λ̇ (t) = f λ (t,KS(t),λ (t)), with λ (1) = λ (0),

which yields the periodic solution(K∗
S (t),λ ∗(t)) that lies completely within one of the three boundary

cases. However, it can happen that the solution at some point leaves the current feasible boundary
before the course of the period of one year is run through. In this caseone cannot find a closed periodic
solution within this feasible area and one has to switch to the corresponding canonical system to get a
periodic solution existing of several arcs. Therefore, a multi-point boundary value problem has to be
solved. At each point of time where the constraints of the current region are violated, a switch to the
proper region happens, meaning that the according canonical system isused to continue the solution.
For n switching timesτ1, . . .τn, which satisfy

τ0 := 0< τ1 < τ2 < · · ·< τn−1 < τn < 1=: τn+1,

n+1 arcs have to be calculated for which the continuity at each switching time has tobe guaranteed.
We introduce an index

ai =











1, for the fossil region,

2, for the mixed region,

3, for the renewable region,

that distinguishes the canonical systems for the three boundary cases described in (5)-(10) for each arc
i with i = 1, . . . ,n+1. For the numerical solution of the system, for each arci+ 1 we use the time
transformation

T (s) = (τi − τi−1)(s− i)+ τi

so that it can be solved with fixed time intervals[i−1, i]. We then have to solve fori = 1, . . . ,n+1,
j = 1, . . . ,n, s ∈ [i− 1, i], and the switching timesτi with τ0 = 0, τn+1 = 1 the multi-point boundary
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problem

K̇Si(s) = (τi − τi−1) f KS
ai
(T (s),KSi(s),λi(s)), (11)

λ̇i(s) = (τi − τi−1) f λ
ai
(T (s),KSi(s),λi(s)), (12)

(

KS j(τ j),λ j(τ j)
)

=
(

KS j+1(τ j),λ j+1(τ j)
)

, (13)

(KSn(1),λn(1)) = (KS1(0),λ1(0)) , (14)

c(a j,a j+1) = 0. (15)

Equations (13)-(14) ensure that the continuity in state and controls at each switch is given and, as a pe-
riodic solution is calculated, the beginning and the endpoint coincide. Equation (15) finally guarantees
the necessary condition that the Lagrangian is continuous as well. This condition is dependent on the
involved regions as well as on the direction of the switch and is given forj = 1, . . . ,n as

c(a j,a j+1) =

{

(KS j(τ j)+ ε)αλ j(τ j)−b = 0, if {a j,a j+1} ∈ {{1,2},{2,1}},

ES(KS j(τ j),τ j)−E = 0, if {a j,a j+1} ∈ {{2,3},{3,2}}.

4.3 Stability

In order to analyze the dynamic behavior of an obtained periodic solutionΓ(t) of the canonical system
(3)-(4) with period length 1, we calculate the monodromy matrix as the principalmatrix solution of the
variational equation

ẏ = J(t)y,

y(0) =

(

1 0
0 1

)

,

whereJ(t) is the Jacobian matrix evaluated at the periodic solutionΓ(t),

J(t) =

(

∂ f KS

∂KS

∂ f KS

∂λ
∂ f λ

∂KS

∂ f λ

∂λ

)

(Γ(t)) .

Determining the Jacobian matrix for the fossil case yields

J(t) =

(

−δS 0
0 r+δS

)

,

and hence the monodromy matrix

M = eJ(1) =

(

e−δS 0

0 er+δS

)

, (16)

with the eigenvalues
e1 = e−δS , e2 = er+δS . (17)

The eigenvalues of the monodromy matrix reflect the stability of the periodic solution. Letei, i = 1, . . . ,n
be the eigenvalues of the monodromy matrix and let

n+ := {i : |ei|< 1}, n− := {i : |ei|> 1} (18)

be the sets of the stable (n+) and unstable (n−) eigenvalues, a periodic solutionΓ(t) is called of saddle-
type if

|n+||n−|> 0 (19)
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holds, which means that at least one of each type has to exist. If|n−| = 0, the periodic solution is
unstable (see Grass et al. (2008)). Further on, if no eigenvalueei = 1, i ∈ {1, . . . ,n} occurs, it even is
a hyperbolic cycle which guarantees that the behavior of the system nearthis periodic solution can be
fully described by its linearisation (see Hale and Koçak (1991)). As 0< δS < 1 andr+δS > 0 always
holds, this implies that every fossil solution that can be found is of saddle-type. Calculating the Jacobian
matrix for the mixed and the renewable case yields

J(t) =







−δS +
α(KS(t)+ε)α−1λ (t)

2c
(KS(t)+ε)α

2c

−
α(KS(t)+ε)−α−2(b2(1+α)+(α−1)(KS(t)+ε)2α λ 2)

4c r+δS −
α(KS(t)+ε)α−1λ (t)

2c






.

Note, that here the Jacobian matrix and therefore also the monodromy matrix are not independent of the
periodic solutionΓ(t). Consequently, a general statement on the stability of the mixed and renewable
periodic solutions is not possible.

4.4 Numerical Continuation of Optimal Paths

In order to calculate a trajectory starting at an initial capital stockK0 and leading into the optimal long-
run periodic solution that completely lies within one of the feasible boundary regions, one has to solve
for t ∈ [0,T ] the boundary value problem

K̇S(t) = f KS(t,KS(t),λ (t)), (20)

λ̇ (t) = f λ (t,λ (t)), (21)

KS(0) = K0, (22)

0 = F ′

((

KS(T )
λ (T )

)

−

(

K∗
S (0)

λ ∗(0)

))

, (23)

where the matrixF is spanning the orthogonal complement to the stable eigenspace (see Grass(2012))
andT is the truncation time of the path. The condition in (23) guarantees that the solution ends on
the linearized stable manifold to which the vectorF is orthogonal (for a more detailed analysis of the
so-called asymptotic boundary condition see Lentini and Keller (1980)).

5 Results

We set for the following analysis the parameters as summarized in Table 1. Solving the canonical

Interpretation Parameter Value Interpretation Parameter Value
Investment costs b 0.6 Depreciation rate δS 0.03
Adjustment costs c 0.3 Initial investment costs ε 1
Energy demand E 2000 Degree of efficiency η 0.2
Fossil energy price pF 0.051 Maximal radiation increment ν 4.56
Discount rate r 0.04 Minimal radiation in winter τ 0.79
Learning coefficient α 0.25

Table 1: Parameter values used for the numerical analysis.

system for these parameters yields three periodic solutions, where one belongs to the fossil case with
zero investmentsIS(t) = 0 and a fossil energy amountEF(t) = E, and the two other ones correspond to
the mixed case with both controls greater than zero. The first one of the mixedperiodic solutions is with
high investments and therefore with a high capital stock and the second one iswith lower investments
and a lower capital stock pretty close to the fossil periodic solution. Their time-control paths are shown
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Figure 2: Time-control paths for the three detected periodic solutions:a) Renewable energy investments
IS(t),
b) Fossil energyEF(t).

in more detail in Figure 2, where Figure 2a corresponds to the renewable energy investmentsIS(t) and
Figure 2b to the fossil energy amountEF(t). The latter one points out the big difference between the
two mixed periodic solutions during the summer period. Due to the higher capital stock of the high
mixed periodic solution, the amount of fossil energy in this period strongly declines compared to the
lower mixed periodic solution.

As we have shown analytically in equations (16) and (17), the fossil solution always is of saddle-
type. To investigate the stability of the other two mixed solutions, we calculate the eigenvalues of the
monodromy matrix, which shows that the lower mixed solution is an unstable focus, while the higher
one is also of saddle-type. The solutions are shown in Figure 3 and together with the corresponding
eigenvalues, are summarized in Table 2.
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Figure 3: The three detected periodic solutions in the state-control space.

Summing up, we have two periodic solutions being of saddle-type whose areas of attraction prob-

11



Solution K∗
S (0) I∗S (0) E∗

F(0) Eigenvalues Objective function (in 103)
Fossil 0.0000 0.0000 2000.00 {0.9704, 1.0725} -2.4500
Mixed low 2.0797 0.0623 1999.67 {1.0182+0.0645i, -2.4491

1.0182-0.0645i}
Mixed high 30.6739 0.9201 1995.15 {0.9827, 1.0591} -2.4351

Table 2: Multiple periodic solutions forpF = 0.051.
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Figure 4: a) Overlap of trajectories leading into the two periodic solutions,b) Indifference threshold
point: Intersection of the objective function values.

ably are separated by an indifference threshold point induced by the unstable focus in between. Indif-
ference threshold points are points in the state space at which the paths leading into different optimal
long-run solutions have the same objective value. Therefore, at these points one is indifferent between
the two solutions. For more detail on indifference threshold points see Grass et al. (2008), Kiseleva and
Wagener (2010) and Kiseleva (2011).

5.1 Calculation of the Indifference Threshold Point

Whether such an indifference threshold point exists or one of the two periodic solutions being of saddle-
type is dominant has therefore to be analyzed. To do so, we continue the trajectories of both periodic
solution as far as possible until one of the subsequent cases occurs: 1. the continuation process aborts as
the path reaches some feasible boundary, 2. the path is bending back, or3. the other periodic solution is
reached. The results of these continuations can be seen in Figure 4a. The path starting at the high mixed
periodic solution is bending back while the one starting at the fossil periodic solution gets infeasible
at some point. To find the indifference threshold point, the objective function values along the two
paths are compared to observe whether there exists an intersection. As theanalyzed model is non-
autonomous, however, the comparison of the objective function values is not time invariant. Therefore,
not the objective function values along the last paths of the continuation processes but the last objective
values of the paths at each continuation step for the current state value have to be considered. The
objective value curves for the two periodic solutions are shown in Figure 4b. The intersection yields
the indifference threshold point, which for the current parameter set liesat KIT P

S = 1.6477.

5.2 Economic Interpretation of the Indifference Threshold Point

The occurrence of an indifference threshold point is an important result of this analysis as the optimal
long-run periodic solution depends on the initial capital stock with which optimization is started.
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Figure 5 shows how the indifference threshold point separates the areas of attraction of the mixed
and the fossil periodic solution. If the initial capital stock exactly lies on the indifference threshold
point KIT P

S , the paths to both periodic solutions are equally expensive and thereforethe decision maker
is indifferent between increasing investmentsIS(t) and moving towards the mixed periodic solution
with a higher capital stock and therefore a lower fossil energy amount during the summer period on
the one hand, and stopping investments and moving towards the fossil periodic solution where all the
energy demand is covered with fossil energy on the other hand. If the initial capital stock is higher than
the indifference threshold pointKIT P

S , it is optimal to move up towards the mixed periodic solution,
if it is lower, the fossil long-run periodic solution is optimal. The reason for this change lies within
the learning by doing effect. If the initial capital stock is high enough, the reduction of the investment
costs due to the learning by doing effect can compensate the cost of additional capital accumulation and
therefore it is optimal to increase the capital stock, which even enforces this effect but at a decreasing
rate. If, however, the initial capital stock is low, the learning by doing effect on the investment costs
is too weak to compensate the costs for additional capital accumulation. Therefore, it is profitable to
reduce investments and hence the capital stock and increase the share offossil energy used to cover the
energy demand until finally, the fossil optimal long-run periodic solution is reached. This initial state-
dependent separation of the areas of attraction is also known as history dependence, as the optimal
long-run periodic solution is determined by the accumulation effort for renewable energy capital in the
past.

This result points out the difficulty of introducing a new energy technology into the market. While
conventional energy types already are competitive and have low prices due to the high experience
accumulated over years, the investment costs for new technologies are very high. As no experience
exists at the beginning, these high investment cost would have to be paid over some period of time
during which the new technology definitely is not profitable until finally at least some reduction due
to accumulated experience is archived which would be the very first step on the long way towards the
break even point. This aspect underlines the importance of subsidies andother kind of financial support
that is necessary during the starting-up period to help new technologies over this barrier. In our model
approach, where no such subsidies are included, it therefore would never be optimal to start with the
renewable energy technology from the very beginning. If no experience exists to reduce the initially
high investment costs, fossil energy always is less cost intensive and,as no further restrictions are
included like CO2 performance standards for example, no switch to a cleaner energy technology would
happen. Only, if there is already a sufficiently high level of experience when optimization is started,
further investments are profitable.

5.3 Breakeven Analysis

As accumulated experience improves the technical processes and hencereduces the necessary financial
effort, the technology gets more profitable. However, it can take a long time until full competitiveness
with the conventional technology is achieved, which happens at the so-called break-even point.

To analyze the extend of the learning by doing effect on the investment costs in our model, we
compare the costs of renewable energy generation with the fossil energypricepF along the path leading
into the optimal long-run periodic solution. The investment costs per unit of generated renewable energy
at this time is given by the term

(

bI∗S (t)+ cI∗S (t)
2
)

(K∗
S (t)+ ε)−α

(ν sin2(tπ)+ τ
)

K∗
S (t)η

, (24)

whereK∗
S (t) and I∗S (t) are the state and the control along the path leading into the optimal long-run

periodic solution. The results can be seen in Figure 6. As the generation ofrenewable energy fluctuates
in time with the available global radiation and occurs in the denominator of equation(24), the invest-
ment costs also vary over the period. However, a clear decreasing tendency can be observed as soon
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Figure 5: Indifference threshold point and the separated areas of attraction of the two periodic solutions.

as capital is accumulated. The black horizontal line in Figure 6 shows the fossil energy pricepF . At
the beginning of the path, the investment costs are very high, especially in winter they are almost the
eight-fold of the fossil energy pricepF . The reasons for this are the initially high investment costs of
the renewable energy technology together with the low initial capital stock andhence the low amount
of generated renewable energy. In summer, however, one can see that the investment costs are lower
as global radiation is high and therefore more renewable energy is generated. Very early along the
path even the fossil energy price level is reached during summer. As the path proceeds, investments
accumulate new capital and therefore the learning by doing effect as wellas the generated renewable
energy increases. This leads to declining price levels both in winter and summer and also the margin
between these two decreases until finally, the optimal long-run periodic solution is reached. Here, the
price level in summer is already far below the fossil energy price level whilein winter it is still above
it. However, over the year the benefit of the portfolio mixture is high enoughto let the combination of
fossil and renewable energy be optimal.

6 Bifurcation Analysis

The analysis of the previous section has shown that the learning by doing effect can imply history
dependence of the optimal long-run periodic solution. The driving forcefor this dependence is given by
the cost-effectiveness of renewable energy generation with respectto conventional energy technologies.
However, there are several factors beyond historical capital accumulation activities that influence this
cost-effectiveness. First of all, of course, the fossil energy pricepF plays a major role, reflecting the
economic performance of the fossil technology. Further on, it is essential how strong the cost decreasing
influence of the learning by doing effect is on the investment costs of renewable energy. Besides that,
also the performance of the renewable energy generation is important, which is determined for example
by site specific factors as for example the supply of global radiation. To analyze how the obtained
results of the previous section change when these factors vary, we conduct in this section a sensitivity
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analysis with respect to the fossil energy pricepF , the learning coefficientα and different sets of the
parametersτ andν that determine the site specific global radiation intensity.

6.1 Fossil Energy PricepF

In the first step, we focus on the influence of the fossil energy price onthe optimal portfolio composition.
We use numerical continuation with respect to the fossil energy pricepF to investigate how the results
change when fossil energy gets more expensive. Note, that we always consider in the following the
bifurcation of the canonical system, not of the optimal system. Therefore,also the changes in the
unstable as well as the dominated long-run periodic solutions are shown. The results can be seen in
Figure 7, where the starting pointsK∗

S (0) of the periodic solutions are plotted as gray line for the fossil
solution and as black line for the mixed solutions. If the fossil energy price isvery low, there exists
only the fossil periodic solution as the opportunity costs of investments into renewable energy capital
are so high that they are not profitable and hence no investments at all aredone and the whole energy
demand is covered only with fossil energy. Starting at a fossil energy price of pF = 0.0446, there
exists also the two mixed periodic solutions, where the lower one is unstable andthe upper one is of
saddle-type. The areas of attraction of the fossil and the upper mixed periodic solutions are separated
by indifference threshold points summarized in the indifference threshold curve plotted as black dotted
line. At the beginning it lies above the unstable mixed long-run solution. As fossil energy in this
area still is comparatively cheap the historical renewable energy capital accumulation efforts have to
be very high in order to make further investments in renewable energy capital profitable. If the fossil
energy price further increases, the indifference threshold curve declines as renewable energy capital
investments are profitable already at a lower historical capital accumulation effort. At pF = 0.0501,
the indifference threshold curve intersects with the mixed unstable long-runperiodic solution. From
then on, the areas of attraction are separated below this periodic solution. At pF = 0.0535 it ends at
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the fossil periodic solution. For a fossil energy price 0.0535≤ pF ≤ 0.0679, still all three long-run
periodic solutions exist, but the high mixed one is dominant as here fossil energy alone would be too
expensive to cover the demand. The unstable mixed solution turns into a multi-arcsolution with two
mixed arcs and one fossil arc in between atpF = 0.0612, as investments decline with the fossil energy
price until they finally get zero. This first happens during the winter period while during the summer
period investments are still positive. As one can see in the figure, the fossilsolution only exist to
some specific fossil energy price. The reason for this is that the Lagrange multiplier µ3(t) becomes
negative. The price at which this happens is a function of stateKS(t) and timet and for the current
parameter set and the fossil solution is given aspF = 0.0678. For higher values ofpF , however, a
fossil-mixed solution still can be feasible if the part along which the Lagrangemultiplier would be
negative is replaced by a mixed arc. As soon as the Lagrange multiplier is negative already at the point
of time whereλ (t) reaches its minimum, however, also no feasible fossil-mixed solution exists, which
is for the current parameter set atpF = 0.069. For fossil energy pricespF > 0.069, the optimal long-
run periodic solution is given by the high mixed periodic solution. Figure 9 shows what happens if
the fossil energy pricepF increases even beyond 0.07. As renewable energy generation progressively
gets profitable due to the reduced investment costs by the accumulated experience as well as compared
to the more expensive fossil energy, a strong increase in renewable energy generation capital can be
observed. However, still both energy types are needed over the wholeperiod in order to cover the
given energy demand. AtpF = 0.5613, renewable energy generation capital is so high that during
summer, when global radiation reaches its maximum, the demand even can be covered without fossil
energy. At this point, the feasible boundary of the mixed case is reached and from this fossil energy
price on a periodic solution exists that consists of two mixed arcs and a renewable arc in between.
Figure 8 shows such a mixed/renewable solution in more detail for a fossil energy price ofpF = 0.8.
Along these mixed/renewable solutions, the demand over some time interval in summer is covered
only by renewable energy, while in winter fossil energy still is needed in addition. If the fossil energy
price increases even more, there is still an increase in the stock of renewable energy capital, however,
obviously at a decreasing rate. The reason for this is, that the marginal benefit of an additional unit
of renewable energy capital declines. Remember, that generated surpluses beyond the energy demand
cannot be used as storage is not included in the model. Therefore, a further increase of the capital stock
only is profitable along the mixed arcs, where the necessary amount of fossil energy can be reduced
by slightly increasing renewable energy generation. But as the global radiation at the switching times
between the arcs gets lower, the closer they are to 0 and 1, more and more renewable energy capital
is necessary to compensate. Although the investment costs of renewable energy capital decline with
the increasing capital stock and reduce at least the financial effort for this compensation, this saturation
effect occurs.

Figure 7 further on shows that a turning point occurs atpF = 0.044 in the mixed solution. To in-
vestigate how the optimal vector field changes here, we consider the local behavior of the monodromy
matrix in what follows.

Figure 10 shows the norm of the eigenvalues of each long-run periodic solution along thepF -axis.
The eigenvalues belonging to the fossil long-run periodic solution are shown in dark gray. As we already
have shown in Section 4.3, the monodromy matrix and hence the eigenvalues ofany fossil solution are
independent on the periodic solution itself as no state nor co-state occurs inthe Jacobian for this case.
Hence, the eigenvalues of the fossil long-run periodic solution in Figure 10 are constant over the fossil
energy pricepF and are given ase1 = e−δS , e2 = er+δS . As one eigenvalue lies within and the other
one outside the unit circle, which in the figure is plotted as black horizontal line,the fossil solution is of
saddle-type over its whole interval of existence. The probably most interesting result can be observed
for the mixed solutions. The eigenvalues corresponding to the upper mixed long-run periodic solution
are shown in Figure 10 as black line, where again one is lying within and the other one outside the
unit circle which specifies the solutions to be of saddle-type. The lower the fossil energy pricepF ,
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the higher gets the stable eigenvalue until finally, atpF = 0.044, it crosses the unit circle. Hence, a
fold-bifurcation occurs (see for more details Reithmeier (1991)) and the stability of the mixed long-run
periodic solution changes from saddle-point stability to unstable. The two eigenvalues outside the unit
circle are plotted as light gray lines in Figure 10. At the beginning they are stillreal and hence the lower
mixed periodic solution is an unstable node, but very soon they get complex and the mixed periodic
solution turns into an unstable focus. AtpF = 0.0612, the lower mixed periodic solution merges into
the fossil-mixed solution of which the eigenvalues are shown as light gray dotted line. Also here, the
eigenvalues are complex and their real parts are outside of the unit circle,which specifies this solutions
as unstable focus as well.

6.2 Learning Coefficientα

As already mentioned, not only the fossil energy price plays an important role how the optimal portfolio
composition looks like, but also the reducing impact of the learning by doing effect on the investment
costs of renewable energy, which is determined by the learning coefficient α . In literature, many re-
search papers can be found that investigate the correct height of learning coefficients for different types
of technologies. However, opinions strongly differ. To analyze how sensitive the optimal portfolio
composition is to different assumptions on the learning coefficient, we conduct in this section the same
analysis as in the previous one, but this time with respect to the learning coefficientα .

We fix the fossil energy price atpF = 0.05 and again use numerical continuation in order to calculate
the optimal long-run periodic solutions as well as the indifference thresholdpoints, if existent, for a
varying α . The results can be seen in Figure 11. For a learning coefficient ofα < 0.2068, which
corresponds to a learning by doing rate ofLDR < 13.35%, the optimal long-run periodic is given by the
fossil periodic solution. The reason for this is the aspect that the learningby doing effect is too weak
to compensate the initially high investment costs in order to make it profitable to invest in renewable
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energy generation capital and hence, the whole demand is covered with fossil energy. For learning
coefficients close toα > 0.2068, three long-run periodic solutions exists of which one is the fossil
solution and the other two are the two mixed solutions where the higher one is of saddle-type and
the lower one is unstable. Indifference threshold points separate again the areas of attraction. The
economic interpretation of this result is that the historical renewable energycapital efforts that are
necessary in order to make renewable energy investments profitable, decline with the intensity of the
learning by doing effect, as a lower initial renewable energy capital stockthen already is sufficient.
Until α = 0.2505, which corresponds to a learning by doing rate ofLDR = 15.94%, the indifference
threshold curve lies beyond the unstable mixed solution. Also here, the path leading into the periodic
solution has to be continued to a mixed arc path in order to get the indifferencethreshold point. For
α > 0.2505, the indifference threshold curve lies below the unstable mixed solutionand further declines
in α until finally, atα = 0.282 and hence at a learning by doing rateLDR = 17.75%, it coincides with
the unstable mixed solution. For higher learning coefficients, the mixed periodic solution dominates the
fossil one as fossil energy is too expensive to be exclusively used to cover the demand.

6.3 Global Radiation Intensity

So far we have investigated the impact of price and learning by doing effects on the optimal portfo-
lio composition. However, we completely have fixed site specific aspects concerning the supply of
global radiation for the previous analysis. Therefore, an interesting aspect on which we focus on in the
following is, how the solutions change when geographical conditions vary.

Figure 12 shows the different global radiation scales in Europe for the year 2007. For the estimation
of the parameter valuesτ andν for the analysis so far, we have used Austrian data, which lies quite
in the middle of the scale as can be seen in Figure 12. However, how would theresults change if
estimations for geological sites higher in the north or lower in the south are used instead? To do so, we
use global radiation data for Hamburg (scenario 1) as an example of a northern site and from Athens
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(Scenario 2) as an example for a southern site, marked as red circles in Figure 12 (source of data see
SODA (2014)). Figure 13 shows the average daily global radiation for Hamburg and Athens from
1985-2004. Comparing this with the global radiation data of Austria shown in Figure 1a, the strong
differences immediately get obvious. While the radiation in winter for Hamburg isless than the half of
the one in Austria, the radiation in Athens at this time of the year is around 50% higher. In summer,
the global radiation in Athens rises up to around 7 kWh/m2, while in Hamburg it reaches only around
4.3 kWh/m2. Given this data, we estimate the parameter valuesτ andν for these two new scenarios,
respectively. The results are summarized in Table 3. Further on, Figure 14 shows the deterministic
functions for Scenario 1, Scenario 2 and also the original estimates for Austria, which we already have
used for the previous analysis.

τ ν
Austria 0.79 4.56
Scenario 1 0.21 4.08
Scenario 2 1.35 5.64

Table 3: Estimates forτ andν .

In order to investigate the changes in the optimal portfolio composition when site specific parame-
ters change, we conduct the same sensitivity analysis with respect to the fossil energy pricepF , as done
in Section 6.1, and compare the different outcomes.

6.4 Sensitivity Analysis for Scenarios 1 and 2

Figure 15 shows the results of the sensitivity analysis for scenarios 1 and2, respectively, compared to
the results we have obtained for the parameters estimated for Austria.
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Figure 12: Global radiation in Europe.
(Source: http://www.focussolar.de/Maps/RegionalMaps/Europe/Europe,4.Feb.2014)

(a) (b)

Figure 13:a) Average daily global radiation in Hamburg (Scenario 1) ,b) Average daily global radiation
in Athens (Scenario 2).

21



Scenario 1

Scenario 2

Austria

0.0 0.2 0.4 0.6 0.8 1.0
t0

2

4

6

8
vRHtL in kWh�m2

Figure 14: Deterministic functions for global radiation.

First, we focus on Scenario 1 with a less intensive supply of global radiation. It shows that the
qualitative behavior is the same. For a low fossil energy price, only the fossil solution exists, while at a
specific point the two mixed solutions, with one being unstable and the other onebeing of saddle-type,
occur and the areas of attraction are separated by indifference threshold points. However, a look on the
price axis makes clear that remarkable changes concerning the position have happened. While the first
bifurcation point at which these two additional mixed periodic solutions exists,has been atpF = 0.0446
for the original set, this happens here atpF = 0.0609. Although the intensity of the learning by doing
effect is the same and therefore the investment costs per unit capital woulddecline at the same speed,
the lower global radiation supply leads to a lower renewable energy generation and hence, to higher
investment costs per unit of power. This aspect shifts the interval in whichthe mixed periodic solutions
as well as the indifference threshold curve exist, to the right as the fossilenergy price has to be much
higher in order to make further investments profitable. Consequently, also the price level at which the
high mixed solution gets dominant and fossil energy as single source to cover the demand is not further
optimal, has shifted to the right. For the original parameter set this happens atpF = 0.0535, while here
the price level for this is much higher atpF = 0.0739. Finally, atpF = 0.091 the optimal long-run peri-
odic solution is given by the high mixed periodic solution. Furthermore, the slope, with which the high
mixed periodic solution increases with the fossil energy price, is lower compared to the basic scenario
for Austria. The reason for this is given by the fact that due to the lower global radiation less renewable
energy can be generated and, hence, the optimal renewable energy capital stock is lower at the same
fossil energy price. Additionally, one can see that also the interval gets larger in which the indifference
threshold curve separates the areas of attraction of the two periodic solutions being of saddle-type. This
is because also the capital stock, at which the mixed periodic solution starts to dominate the fossil one,
is reached at a higher fossil energy price.

Second, we investigate Scenario 2 with a higher intensity of global radiation.Also for this case, the
qualitative outcome does not change, but again the price boundaries areof special interest. While the
interval, in which all three long-run periodic solutions exist and the area ofattraction is separated by an
indifference threshold point, started atpF = 0.0446 in the original set and atpF = 0.0609 in Scenario 1,
one can observe from Figure 15 that this here happens already atpF = 0.0328. As the supply of global
radiation is higher, the investment costs per unit of power for an equal capital stock here are even lower
than for the other two cases. Hence, investments into renewable energy get profitable already at a lower
fossil energy price. For this reason, also the indifference threshold curve has shifted to the left. The
high mixed solution in Scenario 2 gets dominant atpF = 0.0449, a price at which in the original set a
mixed portfolio just starts to be an alternative to the pure fossil one, not to mention Scenario 1 where
this possibility does not exist at all at this price level. Starting atpF = 0.0495, the high mixed solution
is the optimal long-run periodic solution. Here, the slope, with which the high mixed periodic solution

22



increases with the fossil energy price, is higher compared to the basic scenario for Austria. Due to the
higher global radiation more renewable energy can be generated and hence, a higher renewable energy
capital stock is profitable already at a lower fossil energy price. Consequently, the interval in which
the indifference threshold curve separates the areas of attraction of thetwo periodic solutions being of
saddle-type, gets smaller as the capital stock, at which the mixed periodic solution with research starts
to dominate the fossil one, is reached at a lower fossil energy price.
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Figure 15: Bifurcation diagram with respect to the fossil energy pricepF for the scenarios 1 and 2 in
comparison with the results for Austria.

Varying the intensity of the site specific global radiation has shown some interesting aspect. While
in all three cases, the original parameter set as well as the two scenarios,the intensity of the learning by
doing effect is exactly the same, the outcomes and their possible consequences for political decisions are
completely different. While for southern countries, the inclusion of renewable energy into the portfolio
happens quite early along the fossil energy price axis where possible start up subsidies could help to
induce the switch to the mixed portfolio if the accumulated capital stock is below the indifference
threshold curve, for the northern countries the fossil energy price first has to increase enough to make
such subsidies even reasonable. Another interpretation could be that possible taxes on fossil energy
would have to be much higher in order to induce this shift in these countries. But as the supply of
global radiation is lower, the profitability never will be the same as for southern countries.

7 Conclusions

We have investigated in this paper how a small country’s optimal composition of aportfolio consisting
of fossil and renewable (solar) energy looks like when the effect of learning by doing reduces the
investment costs due to accumulated experience. Modeling the problem as a non-autonomous optimal
control model, we have included a one-factor log-linear learning curve into the objective function so that
the accumulated renewable energy capital, which is supposed to reflect thecollected experience, has a
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diminishing impact on the investment costs. Further on, we postulated seasonally varying renewable
energy supply and a well known energy demand that has to be covered.

Sensitivity analysis with respect to the fossil energy pricepF has shown that there exist price inter-
vals in which multiple periodic solutions occur, whose areas of attraction are separated by an indiffer-
ence threshold point. Further on, it turns out that these results are not only sensitive to the fossil energy
price but also to the intensity of the learning by doing effect as well as on geographical conditions
concerning the global radiation.

The occurrence of an indifference threshold point yields important aspects for the economic in-
terpretation of the obtained results. We have seen that whether investments into renewable energy
generation capital are worthwhile or not depends on the initial capital stock. Due to this history depen-
dence, investments into renewable energy generation from the very beginning never would be optimal
in our approach as the initial investment costs are too high. The level of the capital stock at which such
investments get profitable shifts even further up if global radiation is lower,as for the northern coun-
tries, or if the learning by doing effect is weaker, meaning that the learningcoefficient is assumed to be
lower. One important conclusion of these results is, that financial support in form of subsidies during
the starting up period of a new technology could play a major role for the successful introduction of this
technology into the market. The profitability, however, strongly depends onthe site specific conditions.

Experience in this approach has been the driving force for the reduction of investment costs. But
this is not the only source for technological learning. Of course also research and development efforts
could foster the competitiveness of a new technology, which implies accumulation of knowledge and
hence an additional reduction in investment costs. The extension of the model with this aspect will be
of special interest in one of our future works.
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