
 
 
 
 
 
  
 
 

 
 
 
 
 

On the usefulness of set-membership estimation  
in epidemiology of infectious diseases 

 
Andreas Widder 

 
 
 
 
 
 
 
 

Research Report 2016-08 
September, 2016 

 
 
 
 
 
 
 
 
 
 
Operations Research and Control Systems 
Institute of Statistics and Mathematical Methods in Economics 
Vienna University of Technology 

Research Unit ORCOS 
Wiedner Hauptstraße 8 / E105-4  
1040 Vienna, Austria  
E-mail: orcos@tuwien.ac.at 

SWM 
ORCOS 



On the usefulness of set-membership estimation in the

epidemiology of infectious diseases∗

A. Widder†

Abstract

We present a method, known in control theory, to give set-membership estimates for the

states of a population in which an infectious disease is spreading. An estimation is reasonable

due to the fact that the parameters of the equations describing the dynamics of the disease

are not known with certainty. We discuss the properties of the resulting estimations. These

include the possibility to determine best- or worst-case-scenarios and identify under which

circumstances they occur, as well as a method to calculate confidence intervals for disease

trajectories under sparse data. We give numerical examples of the technique using data from

the 2014 outbreak of the Ebola virus in Africa. We conclude that the method presented here

can be used to extract additional information from epidemiological data.

Keywords: mathematical epidemiology · infectious diseases · ODE model · set-membership

estimation · confidence intervals

MSC Classification: 92D30 · 49J53 · 34H99 · 90C30

1 Introduction

Infectious diseases are an ever-current topic in human society. The impact on life expectancy,

quality of life, and the economy of the affected communities can be immense. This is true not

only of decades-long lethal pandemics such as HIV/AIDS ([6]) and violent disease outbreaks

such as the recent Ebola virus epidemic ([17]), but also less threatening but persistent diseases

such as influenza ([14]). Even diseases that affect only animals, such as foot and mouth disease,

can have a noticeable impact on the economy ([7]).

Given the importance of the subject, it is consequential that many different, powerful math-

ematical modelling techniques have been developed that are widely used (for an introduction

∗This research was supported by the Austrian Science Foundation (FWF) under grant P 24125-N13.
†ORCOS, Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology,

Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria, e-mail: andreas.d.widder@alumni.tuwien.ac.at.
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see for example [9, 11]). For the sake of simplicity we will presently only deal with models de-

scribed by ordinary differential equations (ODEs), which in particular includes compartmental

models. In these models the population is divided into several sub-populations (so called com-

partments) and the dynamics are described by giving the rates at which individuals progress from

one compartment to another. As an example, among the simplest such models are susceptible-

infected-recovered-models (SIR-models) where the population is divided into the three mentioned

compartments and the dynamics are given by

Ṡ(t) = −βI(t)S(t),

İ(t) = βI(t)S(t)− γI(t),

Ṙ(t) = γI(t).

In order for this model to be able to correctly describe the progression of a disease, the two

parameters β and γ, which describe the force of infection and recovery rate respectively, need

to be known. The identification of the parameter vector p = (β, γ) for a specific disease is

carried out by statistical analysis of epidemiological data. Due to the importance of estimating

parameters in epidemiological models there is a vast literature concerning this subject. We only

mention [3, 8, 13, 18] and refer to references therein.

The result is that knowledge about the parameter p always entails some uncertainty. For ex-

ample, the information may be given in the form of confidence intervals for each parameter

component. The aim is then to extract as much information as possible about the disease from

the available data. We present here a technique that can in some instances be used to gain

additional information that is not obtained by other methods. If information about some pa-

rameter is only available as a member of a certain set, it is natural to ask whether we also can

describe the possible outcomes as some set-membership. This idea is well established in control

theory (see e.g. [12, 16]) and techniques have be developed to estimate these set-memberships.

We show one of these techniques and discus how this method can be used in an epidemiological

context to gain additional insight from given data, that is relevant for both researchers and

policy makers.

The paper is organised as follows. In Section 2 we present the set-estimation procedure in a

general setting. In Section 3 we discuss this procedure and explore some of its properties. In

Section 4 we demonstrate the technique in some numerical examples by applying it to data from

the Ebola virus outbreak in 2014.
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2 Set-membership estimation

2.1 Formulation of the problem

We consider an ODE system

ẋ(t) = f(t, x(t), p), x(0) = x0. (1)

Here, x ∈ Rn are the state variables, x0 ∈ Rn is the known initial condition, p ∈ Rm is a vector

of parameters, and the function f : R × Rn × Rm → Rn is measurable in t, differentiable in x

and p with Lipschitz continuous partial derivatives. The solution to (1) at time t while using

the specific vector p will be denoted by x[p](t).

We assume that the parameter p lies in a compact and convex set P ⊂ Rm. For each fixed time

T > 0 we now want to estimate what values x(T ) can take, given that p ∈ P. The best possible

estimate is given by the reachable set

R(T ) = {x ∈ Rn : ∃p ∈ P so that x = x[p](T )} .

To put this in an epidemiological context using the simple example given in the introduction, the

vector x(t) = (S(t), I(t), R(t)) is composed of the individual compartments used in the model.

The function f(t, x, p) describes its dynamics and the vector p = (β, γ) contains all parameters.

The set P describes our knowledge about the parameter vector by denoting a region in which

we assume the parameter p may lie. The reachable set R(T ) then tell us which vectors (S, I,R)

may describe the system at time T given our assumptions.

We will in the following describe how an estimate E(T ) ⊇ R(T ) can be calculated. In many

cases not all components of x are of immediate interest, but only the components lying in a

subspace L ⊂ Rn, e.g. if we are only interested in the number of infected individuals but not the

recovered ones. We will therefore also consider estimates EL(T ) that fulfil EL(T ) ⊇ prL(R(T )),

where prL is the projection operator onto L.

2.2 Set-membership estimation

Here we present a method to find approximations to the exact set-membership approximation

R(T ) that is well known in control theory ([5, 12]).

For a fixed time T and a unit vector ` ∈ Rn we consider the optimisation problem

J`(p) := 〈`, x[p](T )〉 → max, (2)
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where x[p](T ) satisfies (1) and p ∈ P (〈·, ·〉 denotes the inner product in Rn). We denote by x`

an ε-solution of (2), i.e. there exists a p ∈ P such that x` = x[p](T ) and x` fulfils

〈`, x`〉 ≥ sup
p∈P
〈`, x[p](T )〉 − ε.

Obviously, R(T ) lies in the half-space {x ∈ Rn : 〈`, x− x`〉 ≤ ε}.

Let Λ = {`1, . . . , `k} be a set of unit vectors for which we have ε-solutions. Then

R(T ) ⊆
⋂

i=1,...,k

{x ∈ Rn : 〈`i, x− x`i〉 ≤ ε} =: EΛ(T ).

Consequently, EΛ(T ) is a set-membership estimation of x(T ). As an intersection of convex sets

EΛ(T ) is itself convex. It is easy to show that if Λ is a δ-net on the unit sphere and both δ and

ε converge to zero, then EΛ(T ) converges to the convex hull of R(T ) in the Hausdorff sense.

If we are only interested in a set-membership estimation in the subspace L ⊂ Rn, then we can

simplify the above definition by requiring that the collection of unit vectors Λ belongs to the

space L from which we can define the estimate

prL(R(T )) ⊆ prL

 ⋂
i=1,...,k

{x ∈ Rn : 〈`i, x− x`i〉 ≤ ε}

 =: EL(T ).

In order to calculate an estimate E(T ) we need to solve (at least approximately) the optimi-

sation problem (2).

2.3 The optimisation problem

For ` ∈ Rn we want to maximise

J`(p) = 〈`, x[p](T )〉.

Denote by A∗ the transpose of the matrix A. For a given p ∈ P and corresponding state

trajectory x[p](t) we define the adjoint function λ[p](t) as the solution to the terminal value

problem

λ̇[p](t) = −f ′x(t, x[p](t), p)∗λ[p](t), λ[p](T ) = −`. (3)

Theorem 1. The functional J` is differentiable and the derivative is given by

J ′`(p) = −
T∫

0

f ′p(t, x[p](t), p)∗λ[p](t) dt. (4)

4



Proof We have

J`(p)− J`(p̂) = 〈`, x[p](T )− x[p̂](T )〉

and

T∫
0

〈
λ̇[p̂](t), x[p](t)− x[p̂](t)

〉
dt = 〈λ[p̂](T ), x[p](T )− x[p̂](T )〉 − 〈λ[p̂](0), x[p](0)− x[p̂](0)〉

−
T∫

0

〈λ[p̂](t), ẋ[p](t)− ẋ[p̂](t)〉 dt.

Using that λ[p̂](T ) = −` and that x[p](0) = x[p̂](0) we can add these two equations to get

J`(p)−J`(p̂) = −
T∫

0

〈
λ̇[p̂](t), x[p](t)− x[p̂](t)

〉
+ 〈λ[p̂](t), ẋ[p](t)− ẋ[p̂](t)〉 dt

=−
T∫

0

〈
λ̇[p̂](t), x[p](t)− x[p̂](t)

〉
+ 〈λ[p̂](t), f(t, x[p](t), p)− f(t, x[p̂](t), p̂)〉 dt

=−
T∫

0

〈
λ̇[p̂](t), x[p](t)− x[p̂](t)

〉
+
〈
λ[p̂](t), f ′x(t, x[p̂](t), p̂)(x[p](t)− x[p̂](t))

〉
+
〈
λ[p̂](t), f ′p(t, x[p̂](t), p̂)(p− p̂)

〉
dt+ o(|p− p̂|)

=

〈
−

T∫
0

f ′p(t, x[p̂](t), p̂)∗λ[p̂](t) dt, p− p̂

〉
+ o(|p− p̂|).

The last equality is due to (3), while the fact that the remaining terms in the Taylor approxi-

mation are o(|p− p̂|) follows from Grönwall’s Lemma, which tells us that |x[p1](t)− x[p2](t)| ≤
c|p1 − p2|. The result follows obviously from the above equality. 2

2.4 Numerical procedure

Using this result we can derive a numerical gradient projection procedure for solving the problem

(2). Starting with a point p0 ∈ P we first solve the initial value problem (1) and then the terminal

value problem (3). Using the formula in Theorem 1 we can calculate the gradient J ′`(p0). We

then choose a step size α that maximises J` (prP (p0 + αJ ′`(p0))) and set p1 = prP (p0 + αJ ′`(p0)).

Iterating this process yields convergence to a critical point p̂ so that after enough iterations the

calculated value will be an ε-solution. For more detailed explanation of gradient projection
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algorithms, in particular the choice of the step size α, see for example [15]. Algorithm 1 below

shows the pseudo code for a possible implementation of this procedure.

The optimisation problem (2) has to be solved for many different times Tn. If p̂ maximises J` for

Tn then p̂ is a sensible initial guess for the maximisation of J` at the time Tn+1 which can make

the algorithm more efficient. Furthermore, the adjoint equation (3) is linear which is another

property that might in some cases simplify the calculation.

Another possible difficulty in this procedure is the calculation of the projection onto the set

P, which can be very complicated depending on its nature. However, if the set P is given by

box constraints then this task is very simple. Such constraints arise for example if the set is

described by confidence intervals of the individual parameter components. This is a common

way the information about the parameter is available.

input : functions f(t, x, p), f ′x(t, x, p), and f ′p(t, x, p); initial condition x0; initial guess

p0; tolerance ε; stopping condition τ < 1; unit vectors `1, . . . , `k; time

discretisation 0 = T0, . . . , Tr = T

for j = 1, . . . , k do

pnew = p0;

for i = 1, . . . , r do

error = 1;

while error ≥ τ do

pold = pnew;

calculate x[pold](t) on [0, Ti] using (1);

calculate λ[pold](t) on [0, Ti] with terminal condition λ(Ti) = −lj using (3);

calculate J ′`j (pold) using (4);

choose step size α;

pnew = prP

(
pold + αJ ′`j (pold)

)
;

error = ‖pnew − pold‖ or ‖J`j (pnew)− J`j (pold)‖ or similar;

end

x`j (Ti) = x[pnew](Ti);

end

end

for i = 1, . . . , r do

E(Ti) =
⋂
j=1,...,k

{
x ∈ Rn :

〈
`j , x− x`j (Ti)

〉
≤ ε
}

;

end

output: set-mebmership estimation E(t) of R(t) at each discretisation point Ti
Algorithm 1: Set-membership estimation
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3 Discussion of the estimation

Here we want to discuss some attributes of the set-membership estimation that is described in

Section 2.

3.1 Convexity of the estimate

As already noted, the set-membership estimation E(T ) is always convex. However, epidemiolog-

ical models are usually non-linear, and the reachable sets of non-linear equations do not have

to be convex ([4]). The convex hull of R(T ) (which our procedure approximates) is therefore

usually strictly larger than the reachable set itself, which limits the accuracy of our approach.

We therefore present two ways in which this limitation can be circumvented.

The first way is to consider only estimations of a single component of x. Since x[p](T ) depends

continuously on p and P is connected, R(T ) is also connected. The projection onto a one

dimensional subspace is therefore necessarily convex. The estimate EL(T ) for a one dimensional

space L therefore approximates the reachable set in L itself since it coincides with its convex

hull. A further advantage of this approach is that the unit sphere in a one dimensional space is

given by the two vectors {−1, 1} and so no further discretisation is necessary.

If an approximation of the non-convex set R(T ) in a higher dimensional space is needed, the

procedure presented in Section 2 can be used in the following way. Create a partition of the set

P into two convex sets PA and PB. Calculate for each of them their respective set-membership

estimation EPA
(T ) and EPB

(T ), i.e. the estimates for x(T ) given that p ∈ PA and PB respectively.

Since PA ( P, the diameter of EPA
(T ) cannot be larger than the diameter of the estimate EP(T ).

Obviously, the same reasoning can be applied to PB. On the other hand, the union of EPA
(T )

and EPB
(T ) necessarily contains R(T ). If necessary, the sets PA and PB can now themselves

be partitioned further until we arrive at a partition P1, . . . ,Pk of P such that the diameter of

EPi(T ) is smaller than some given tolerance η > 0. The union of these estimates is then an

estimate of R(T ) with a distance (in the Hausdorff sense) from R(T ) of at most η.

This procedure may be numerically costly so that it might be more reasonable to consider the

numerically cheaper estimates for the convex hull of R(T ).

There are some special cases in which other procedures may be more effective to calculate the

reachable set. For example, if the parameter set is one dimensional, i.e. given by an interval

[a, b], then the reachable set can be approximated by discretising the interval and calculating

the solution for each point in the discretisation. Similar approaches become infeasible if the

parameter vector is high dimensional.
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3.2 Identifying extremal values

Set-membership estimates can be used to calculate worst-case-scenarios (or best-case-scenarios).

If the quantity in question is one of the components of x(T ), then the set-membership estimate

in the one dimensional space of this component calculates the maximum and minimum value

this component can take. This allows us for example to determine the maximum number of

people that could become infected during a disease outbreak, given the parameter constraints.

If the quantity in question is not one of the components of x, but its derivative can be computed,

we can of course extend the vector x by the variable in question. For example, assume we are

interested in the prevalence of the infection given by I(t)
N(t) , where I(t) denotes the number of

infected individuals and N(t) the population size. Assume that I(t) and N(t) are components

of x but that the prevalence is not. Since we are able to calculate İ(t) and Ṅ(t), we can add

the variable xn+1(t) with initial conditions xn+1(0) = I(0)
N(0) and derivative İ(t)N(t)−I(t)Ṅ(t)

N(t)2
. The

set-membership estimation can then be used to calculate the maximal prevalence that can occur

during an outbreak, given the parameter constraints.

Furthermore, if we are interested in a quantity y(x(T )) for which the above is not possible, the

set-membership estimate can still be useful. Given an estimate E(T ) for x(T ) we can calculate

maxx∈E(T ) y(x) to get an estimate for the maximal possible value of y.

Another useful aspect of this calculations is that not only do we get information about the

extremal values of x, but also for which parameters p this values are obtained. In many cases it is

not obvious which choice of parameters will maximise or minimise a certain variable. Identifying

them can be of importance in constructing policies to minimise the impact of a disease.

3.3 Confidence intervals for the trajectories

A common way (see e.g. [2]) to obtain pointwise confidence intervals for the trajectories of

various variables is the following: Calculate the maximum likelihood estimate p̂ of the unknown

model parameters and the associated variance-covariance matrix Σ. Then simulate large number

or parameters with a normal distribution with mean p̂ and variance matrix Σ. Calculate the

trajectory for each of the simulated parameters and use e.g. the 2.5% and 97.5% quantile to

construct the 95% confidence interval.

This is based on the fact that under certain circumstances the maximum likelihood estimate is

asymptotically normally distributed. In particular this approach is only valid if enough data is

available for the estimator to approach this asymptotic distribution. Set-membership estimates
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can be used to describe confidence intervals in a different way, without any need of further

assumptions.

Under the model assumption, i.e. that the trajectories follow equation (1), every trajectory is

given by x[p](t) for some parameter vector p. Let P be a 95% confidence region for p, i.e. there

is a 95% chance that the set P contains the true parameter p̂1. Let R(T ) be the reachable set

of (1) at time T under the assumption that p ∈ P. Then, letting P(A) describe the probability

of the event A, we have

P (x[p̂](T ) ∈ R(T )) =P (x[p̂](T ) ∈ R(T ) | p̂ ∈ P)P (p̂ ∈ P)

+ P (x[p̂](T ) ∈ R(T ) | p̂ /∈ P)P (p̂ /∈ P) .
(5)

By the definition of the reachable set the first probability on the right hand side is 1. Due to

the fact that P describes the 95% confidence region we have P (p̂ ∈ P) = 0.95. The value of the

second addend is unknown since we have in general no information about the probability that

a trajectory of the system, with a parameter that lies outside of P, will at time T be in the

reachable set for the system with parameter values that lie in P. However, since it is certainly

non-negative we have

P (x[p̂](T ) ∈ R(T )) ≥ 0.95.

This probability is of course to be interpreted in the sense of a confidence region. That is, if the

reachable set is calculated from a data set, there is at least a 95% chance that the reachable set

contains the true trajectory.

Thus the reachable set describes a confidence region for the trajectory of at least the confidence

level of the region for the parameter. The same is of course true if we look at the trajectory

of components of x(T ) in the subspace L ⊂ Rn and the respective reachable sets RL(T ). In

particular, if we look at a single component of x(T ), then the set-estimate EL(T ) approximates

a confidence interval (i.e. a one dimensional confidence region) with a level of at least that of P.

This approximation can be done to arbitrary accuracy and does not depend on any additional

assumptions. This means for example that, unlike the method described at the beginning of

this section, the procedure is valid even for small data sets.

1We use here frequentist connotation. However, the same argument can be made in Bayesian terms, if P is

replaced by a 95% credible region, i.e. a set such that the probability that the parameter p lies in P is 95%.
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4 Numerical examples

In this section we use a model and data presented by Althaus in [1] for the outbreak of the

Ebola virus in 2014 in Guinea. The model equations are

Ṡ(t) = −βe−ktS(t)I(t)

N(t)
,

Ė(t) = βe−kt
S(t)I(t)

N(t)
− σE(t),

İ(t) = σE(t)− γI(t),

Ṙ(t) = (1− f)γI(t),

(6)

together with

Ċ(t) = σE(t),

Ḋ(t) = fγI(t).

Here, S denotes the susceptible individuals, E the exposed class, I the infectious individuals,

and R the recovered. The total number of individuals is given by N = S + E + I + R. The

additional two variables denote the cumulative number of infected cases C and deaths D. The

parameters 1
σ and 1

γ are the average durations of incubation and infectiousness, respectively.

The transmission rate is denoted by β and the fatality rate by f . The factor k determines the

exponential decay of the transmission rate due to intervention measures. The initial conditions

for the vector (S,E, I,R,C,D) are (106 − 1, 0, 1, 0, 1, 0). The two parameters σ and γ are fixed

at 1
5.3 and 1

5.61 respectively. The remaining three parameters are estimated from data. The

maximum likelihood estimate (and the 95% confidence interval) for these parameters are2

β = 0.268574 (0.266924, 0.270189),

f = 0.7368011 (0.719586, 0.754707),

k = 0.0023379 (0.0022597, 0.002415).

The box described in R3 by these three intervals can be used as the set P of possible parameters.

Note however, that this box will not describe a 95% confidence region. There are different

interpretations of the result when using this set. One is to say that this set describes the best

knowledge we have about the location of the parameters, and the set-membership estimation

therefore yields the best forecast that is possible, given our information. This interpretation

may be particularly justified in cases where the estimates for different parameters come from

different sources (and in particular different data sets). In cases such as the present one, where

2The values presented here are slightly different than the one in [1]. There, rounded values have been given.

The more accurate values presented here were kindly provided by the author of [1] in personal correspondence.
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Figure 1: A comparison with the set membership estimation with the data. The dotted line

is calculated using the maximum likelihood estimate. The solid lines are the set-membership

estimation calculated by using the 95% confidence intervals. The dashed lines are calculated

from a 95% confidence region using Bonferroni’s method.

the data can be analysed, we may interpret the box described by the confidence intervals as a

confidence region using the Bonferroni method ([10]). According to this method, to get a 100−
α% confidence region for an m-dimensional parameter, we calculate the 100 − α

m% confidence

intervals for each component. The box described by these intervals is then a confidence region

of the desired level. Therefore, in our case the 95% intervals provided yield an 85% confidence

region for the parameter. To get an 95% confidence region we need to calculate the 98.3̇%

confidence intervals for the individual components of the parameter vector. In Figure 1 we

compare the two resulting set-membership estimations to the actual data3. In Figure 2 we

calculate the estimations over a longer time period. Doing this for more confidence levels results

in a graduation of confidence regions for the trajectory.

Extremal parameters

In simple models it is sometimes obvious what parameter configuration maximises (or minimises)

certain compartments. For example, looking at the equations in (6) we see that an increase in

β will lead to a decrease of S(t). So to maximise S(t) we certainly need to minimise β. In

more complicated models such relations are often hard to discern. As mentioned in Section

3, the set-membership estimation technique allows us to calculate for each t which parameter

3The calculations here were carried out in Matlab. The code has been made public in [21].

11



0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

C
u
m

m
u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
c
a
s
e
s

t

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

C
u
m

m
u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
d
e
a
th

s
t

Figure 2: A long term calculation of the maximum likelihood estimate (dotted line), and esti-

mations using the 95% confidence intervals (dashed lines), and a 95% confidence region (solid

lines).

combination will yield a maximum for certain variables.

In order to capture at least one time dependent effect, we now consider a slight variation of

Equations (6). We now assume that recovered individuals may return into the susceptible class

and let ρ denote the rate at which this happens. We furthermore assume that the disease is not

fatal and that no intervention is made. The resulting equations are then given by

Ṡ(t) = −βS(t)I(t)

N(t)
+ ρR(t),

Ė(t) = β
S(t)I(t)

N(t)
− σE(t),

İ(t) = σE(t)− γI(t),

Ṙ(t) = γI(t)− ρR(t).

(7)

We assume that our knowledge about the parameters can be described by the inclusions

β ∈ [0.05, 0.06],

σ ∈ [0.3, 0.35],

γ ∈ [0.05, 0.055],

ρ ∈ [0.2, 0.23].

These numbers are not based on data and are chosen to highlight the dynamical features. In

Figure 3 we show the set-membership estimation for I(t) based on this information. We also
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Figure 3: Set-membership estimates for I(t) along with the parameter combinations that max-

imise and minimise I(t). Even in the simple model presented here this combination may change

with time.

show the parameter combinations that maximise and minimise I(t). We see that even for the

simple model we have chosen, the parameter combination that minimises I(t) changes with time.

For more complex models the time dependence of extremal parameter configurations may be

more pronounced. Also note that it is not necessary that the extremal parameter combination

is on the boundary of the interval for each component.

5 Discussion

In this paper we discuss a technique to calculate set-membership estimations of trajectories for

dynamical systems in which some parameters are not known. We apply this technique, which is

well known in control theory, to epidemiological models, and emphasise certain aspects that are

of particular use in this context. Namely, we describe how the estimates can be interpreted as a

confidence region for the trajectories if the knowledge about the parameters is given in form of

confidence intervals, as is often the case. We furthermore explain how this method can be used

to find parameters which yield the highest or lowest value for a state variable of choice.

In conclusion, the technique presented here identifies the best and worst case scenario given

all available information, and indicates which parameters should be influenced to achieve a more

preferable outcome. This may be of particular interest to policy makers.

In this paper we focus on ODE models in which the dynamics depend on a finite dimensional

parameter vector. However, this method can be altered for more general settings. For example,

Theorem 1 can easily be adapted to include the case that the initial condition x0 is itself an

unknown parameter, or cases where the dynamics do not depend smoothly on the parameter p
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It can also be applied to heterogeneous models with structured populations, where the dy-

namics are described by partial differential equations. In such models, initial conditions are

given by a density function in an infinite dimensional space. These densities are usually not

known. Also, parameters may depend on the population structure and therefore lie in some infi-

nite dimensional function space. Some results have been presented to deal with unknown initial

conditions ([19, 20]), and further research may provide results regarding unknown parameter

functions.

Set-membership estimation is shown to be a flexible technique that can be applied in many

different situations to help extract the maximum amount of information from epidemiological

data.
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