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Abstract

The paper presents sufficient conditions for a strong metric subregularity (SMSr) property
of the optimality mapping associated with the Pontryagin local maximum principle for a
Mayer’s type optimal control problem with general initial/terminal constraints for the state
variable and unconstrained control. This SMSr property is adapted to the involvement of
two norms in the basic assumptions: smoothness, constraint qualification, and strong second
order sufficient optimality conditions. The proofs are based on a new abstract result for strong
metric subregularity (in a two-norms setting) of the Karush-Kuhn-Tucker optimality mapping
for a mathematical programming problem in a Banach space, also presented in the paper.
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1 Introduction

This paper investigates a subregularity property related to the optimization problem

min f0(x), g(x) = 0, fi(x) ≤ 0, i = 1, . . . , k, (1)

where f0 : X → R, g : X → Y , fi : X → R, for i = 1, . . . , k and X and Y are Banach spaces. The
following system of equations and inequalities is known as Karush-Kuhn-Tucker (KKT) system
associated with problem (1):

f ′0(x) +
k∑

i=1

αif
′
i(x) + (g′(x))∗y∗ = 0,

g(x) = 0,

αifi(x) = 0, i = 1, . . . , k,

fi(x) ≤ 0, αi ≥ 0, i = 1, . . . , k,

where x ∈ X, y∗ ∈ Y ∗ (Y ∗ denotes the dual space to Y ), and α := (α1, . . . , αk) ∈ Rk. Moreover,
“primes” indicate Fréchet derivatives (assuming that these exist), and (g′(x))∗ : Y ∗ → X∗ is the
adjoint of the continuous linear operator g′(x) : X → Y .

∗This research is supported by the Austrian Science Foundation (FWF) under grant No P31400-N32.
†Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland osmolov@ibspan.waw.pl
‡Institute of Statistics and Mathematical Methods in Economics, TU Wien, Austria,

vladimir.veliov@tuwien.ac.at

1



Under an additional condition called Mangasarian-Fromovitz constraint qualification, the ex-
istence of a pair (y∗, α) ∈ Y ∗×Rk, such that the KKT system is fulfilled, is a necessary condition
for x ∈ X to be a local solution of problem (1). The relations in the last two lines of the KKT
system can be equivalently rewritten as

f(x) ∈ NRk
+

(α),

where f = (f1, . . . , fk), Rk
+ is the set of all elements of Rk with non-negative components, and

the normal cone to the set Rk
+ is defined as usual:

NRk
+

(α) :=

{
{λ ∈ Rk : 〈λ, β − α〉 ≤ 0 for all β ∈ Rk

+} if α ∈ Rk
+,

∅ if α 6∈ Rk
+,

where 〈·, ·〉 is the scalar product in Rk. Consequently, one can reformulate the KKT system as

F (x, y∗, α) :=

 f ′0(x) +
∑k

i=1 αif
′
i(x) + (g′(x))∗y∗

g(x)
f(x)−NRk

+
(α)

 3 0. (2)

Therefore, the set-valued mapping F : X × Y ∗ × Rk ⇒ X∗ × Y × Rk is called KKT optimality
mapping, see e.g. [9] and [11, p. 134].

The property generally called Strong Metric Subegularity (SMSr) (see e.g. [11, Chapter 3.9]
and [4]) of the mapping F is of key importance in the qualitative and numerical analysis of
optimization problems admitting a formulation as (1). In particular, versions of this property
(sometimes appearing under different names) are widely used for obtaining error estimates for
numerical methods for variational inequalities and optimal control problems, such as gradient
methods, Newton-type methods, etc. (see e.g. [2], [26, Section 5], [4, Subsection 7.3], [1], [18]
among others). The SMSr property of the KKT mapping for finite-dimensional mathematical
programming problems is characterized in [9, Theorem 2.6] and [4, Theorem 7.1]. The char-
acterization involves strict Mangasarian-Fromovitz condition and strong second order sufficient
optimality condition, the latter also called coercivity condition, and requires appropriate differen-
tiability properties for the data f0, f , g.

However, the targeted application in this paper is in calculus of variations and optimal control.
It is well known (after the works [23, 21, 22]) that in the optimal control context the norm in
which the coercivity condition has to be posed (usually L2 for the controls) is so weak that the
differentiability assumption in this norm is rather restrictive (the so called norm discrepancy).
For this reason, the two norm approach was developed in [21, 22] and subsequent publications,
in which differentiability is assumed with respect to a stronger norm than the one in which the
coercivity is required. This approach is used for studying Lipschitz dependence of the solutions of
optimal control problems on a parameter. Among the large literature on this subject we mention
the path-breaking papers [21, 7, 22, 8]. We mention that the Lipschitz dependence of the solution
on a parameter is related to the property of strong metric regularity, which is a subject of a huge
number of publications (cf. [11, 15]).

In this paper we present a sufficient condition for strong metric subregularity of the KKT
mapping in (2) using the two norm approach. The property of strong metric subregularity is
weaker than that of stronger metric regularity, therefore the sufficient conditions for SMSr are
weaker that those in [21]. In addition we mention that although state constraints are considered
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in [21], their specific form does not cover the case of initial and terminal constraints which are in
the focus of the present paper.

The obtained in this paper abstract subregularity result is applied to the following optimal
control problem of Mayer’s type on a fixed time interval [t0, t1]:

minimize ϕ0(x(t0), x(t1)) (3)

subject to
ẋ(t) = h(x(t), u(t)), t ∈ [t0, t1], (4)

ψj(x(t0), x(t1)) = 0, j = 1, . . . , s, (5)

ϕi(x(t0), x(t1)) ≤ 0, i = 1, . . . , k, (6)

where h : Rn × Rm → Rn, ψj : Rn × Rn → R, j = 1, . . . , s, ϕi : Rn × Rn → R, i = 0, . . . , k.
We stress that control constraints are not involved, therefore we actually deal with a general

problem of calculus of variations. The strict Mangasarian-Fromovitz condition and the coercivity
condition take specific forms, in which two norms are used similarly as in [21]. The main novelty
of the strong subregularity result is that the coercivity condition is posed on a critical cone with
initial/terminal constraints for the state variable.

The paper is organized as follows. In Section 2 we present a basic theorem about stability of the
SMSr property adapted to the consideration of two norms. Needed properties of systems of linear
inequalities and equations in Banach spaces are also provided. Sufficient conditions for SMSr of
the KKT mapping for a mathematical programming problem in a Banach space setting (with
equality constraints and a finite number of inequality constraints) are presented in Section 3.
Section 4 deals with the optimal control problem (3)–(6). Here we formulate and prove the main
results in the paper: the sufficient conditions of the SMSr property (in the two-norm setting) for
two optimality mappings associated with problem (3)–(6): first, for the optimality mapping in
Lagrangian format, then for the optimality mapping arising in the Pontryagin local maximum
principle.

2 Preliminaries

2.1 Strong metric subregularity

Let X and Z be two normed linear spaces with norms ‖ · ‖X and ‖ · ‖Z . Let also a second norm
be defined in X , denoted by ‖ · ‖′X , such that ‖s‖′X ≤ ‖s‖X for every s ∈ X . Denote by IBZ(z; r)
the ball of radius r in Z, centered at z. Let L : X ⇒ Z be a set-valued mapping. As usual,
gr(L) := {(s, z) ∈ X ×Z : z ∈ L(s)} is the graph of L. The following property is a modification
of the strong metric subregularity property, which will be abbreviated as SMSr2.

Definition 2.1 The mapping L has the property SMSr2 at ŝ for ẑ if (ŝ, ẑ) ∈ gr(L) and there
exist neighborhoods Oŝ 3 ŝ (in the norm ‖ · ‖X ), Oẑ 3 ẑ and a number κ such that the relations

s ∈ Oŝ, z ∈ Oẑ, z ∈ L(s)

imply that
‖s− ŝ‖′X ≤ κ‖z − ẑ‖Z .
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The property SMSr2 has the good feature that it is preserved under perturbations with a
sufficiently small Lipschitz constant at ŝ (more precisely, sufficiently small calmness constant at
ŝ, see [10, Theorem 3I.7]). For strongly metrically subregular mappings this property appeared
first in [6, Theorem 3.2], see also [4, Theorem 2.1]. We give a proof of a corresponding to Definition
2.1 modification of this stability property.

Theorem 2.1 Let L has the property SMSr2 at ŝ for ẑ with neighborhoods Oŝ (in the norm
‖ · ‖X ), Oẑ and parameter κ̂. Let the numbers b > 0, µ ≥ 0 and κ ≥ 0 satisfy the relations

κ̂µ < 1, κ ≥ κ̂

1− κ̂µ
, IBZ(ẑ; 2b) ⊂ Oẑ. (7)

Then for every function ϕ : X → Z such that

‖ϕ(s)− ϕ(ŝ)‖Z ≤ b and ‖ϕ(s)− ϕ(ŝ)‖Z ≤ µ‖s− ŝ‖′X ∀ s ∈ Oŝ,

the mapping ϕ+L has the property SMSr2 at ŝ for ẑ+ϕ(ŝ) with neighborhoods Oŝ, IBZ(ẑ+ϕ(ŝ)); b)
and constant κ.

Proof. Let s ∈ Oŝ, z ∈ IBZ(ẑ + ϕ(ŝ); b) and z ∈ ϕ(s) + L(s). Then

‖(z − ϕ(s))− ẑ‖Z ≤ ‖z − (ẑ + ϕ(ŝ))‖Z + ‖ϕ(s)− ϕ(ŝ)‖Z ≤ b+ b.

Thus z − ϕ(s) ∈ Oẑ and, moreover, z − ϕ(s) ∈ L(s). According to the SMSr2 property of L,

‖s− ŝ‖′X ≤ κ̂‖(z − ϕ(s))− ẑ‖Z ≤ κ̂‖z − (ẑ + ϕ(ŝ))‖Z + κ̂‖ϕ(s)− ϕ(ŝ)‖Z
≤ κ̂‖z − (ẑ + ϕ(ŝ))‖Z + κ̂µ‖s− ŝ‖′X ,

hence

‖s− ŝ‖′X ≤
κ̂

1− κ̂µ
‖z − (ẑ + ϕ(ŝ))‖Z .

2

Remark 2.1 Observe that the norm ‖ · ‖X is involved in Theorem 2.1 only for restricting the
solutions s appearing there to be close to the reference solution ŝ in this bigger norm. This is
needed for the application of the main result in this paper in optimal control.

2.2 Systems of equations and inequalities.

Let X be a Banach space and let X∗ be its dual space. The norm in each of these spaces will be
denoted by ‖ · ‖, but sometimes for more clarity we use ‖ · ‖X , ‖ · ‖Y , ‖ · ‖X∗ , etc. The value of
l ∈ X∗ applied to x ∈ X will be denoted by l(x) or just by lx.

We also consider another Banach space Y and a linear continuous operator A : X → Y . As
usual, we denote by A∗ : Y ∗ → X∗ its dual operator, so that (A∗y∗)(x) = y∗(Ax), therefore we
use the notation y∗A for A∗y∗. We also use the notation Rk

+ = {α = (α1, . . . , αk) ∈ Rk : αi ≥
0 ∀ i = 1, . . . , k}.

4



Definition 2.2 The functionals l1, . . . , lk ∈ X∗ are positively independent on a subspace L ⊂ X
if the conditions α = (α1, . . . , αk) ∈ Rk

+ and
∑k

i=1 αili(x) = 0 ∀x ∈ L imply that α = 0.

Denote by L∗ the set of functionals x∗ ∈ X∗ vanishing on a subspace L ⊂ X. If AX = Y ,
then, as known, (kerA)∗ = A∗Y ∗, see e.g. [5, Lemma 3.6].

Lemma 2.1 The following two properties are equivalent:
(i) AX = Y , and the the functionals l1, . . . , lk ∈ X∗ are positively independent on kerA;
(ii) AX is closed, and the relations

y∗ ∈ Y ∗, α ∈ Rk
+ and y∗A+

k∑
i=1

αili = 0 (8)

imply that y∗ = 0 and α = 0.

Proof. 1. If (i) holds, then AX is closed. If (8) is fulfilled then for every x ∈ kerA we have∑k
i=1 αili(x) = 0. From the second part of (i) we obtain that α = 0. The equalities y∗A = 0 and

AX = Y imply that y∗ = 0.
2. If (ii) holds and A is not surjective, then due to the closedness of AX, there exists a non-

zero y∗ ∈ Y ∗ such that y∗A = 0. The second part of (ii) with α = 0 leads to the contradiction
y∗ = 0. Thus AX = Y . Now let α ∈ Rk

+ and
∑k

i=1 αili = 0 on kerA. Then
∑k

i=1 αili ∈ (kerA)∗

and since AX = Y , there exists y∗ ∈ Y ∗ such that
∑k

i=1 αili = −y∗A. Then from the second
part of (ii) we obtain that y∗ = 0 and α = 0. 2

Proposition 2.1 If the linear and continuous operator A : X → Y is surjective and the func-
tionals l1, . . . , lk ∈ X∗ are positively independent on kerA, then there exists a constant c > 0 such
that

‖y∗A+

k∑
i=1

αili‖ ≥ c
(
‖y∗‖+

k∑
i=1

αi

)
∀ y∗ ∈ Y ∗ and ∀α ∈ Rk

+. (9)

Proof. Since the inequality in (9) is positively homogeneous, it suffices to prove it for pairs
(y∗, α) ∈ Y ∗×Rk

+ such that ‖y∗‖+
∑k

i=1 αi = 1. Suppose that the proposition is not true. Then

there is a sequence (y∗n, α
n) ∈ Y ∗×Rk

+, where αn = (αn1, . . . , αnk), such that ‖y∗n‖+
∑k

i=1 αni = 1

and ‖y∗nA+
∑k

i=1 αnili‖ → 0 with n→∞. Without loss of generality we can assume that αn →
α ∈ Rk

+. Then ‖y∗nA+
∑k

i=1 αili‖ → 0 and
∑k

i=1 αili ∈ (kerA)∗, since (kerA)∗ is a closed subspace

in X∗. Consequently y∗nA converges in X∗ to x∗ = −
∑k

i=1 αili ∈ (kerA)∗ = A∗Y ∗. Then, there
is (a unique) y∗ ∈ Y ∗ such that y∗A = x∗ and, by the Banach open mapping theorem applied to
A∗, ‖y∗ − y∗n‖ ≤ δ‖(y∗ − y∗n)A‖ with some constant δ. Since ‖(y∗ − y∗n)A‖ → ‖y∗A − x∗‖ = 0,
we obtain that ‖y∗ − y∗n‖ → 0. Consequently, y∗A +

∑k
i=1 αili = 0. In view of Lemma 2.1, this

contradicts the assumption of the proposition because ‖y∗‖+
∑k

i=1 αi = 1. 2

As a consequence we obtain the following extension.
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Proposition 2.2 Suppose that A and li, i = 1, . . . , k, be as in Proposition 2.1 and c be the
constant in (9). Let the functionals l̃i ∈ X∗, i = 1, . . . , k, and operator Ã : X → Y satisfy

‖l̃i − li‖ < ε, i = 1, . . . , k, ‖Ã−A‖ < ε, 0 < ε < ĉ.

Then, for the system l̃1, . . . , l̃k, Ã inequality (9) holds with c̃ := c− ε.

Proof. Let α ∈ Rk
+, y∗ ∈ Y ∗. Then

‖
k∑

i=1

αi l̃i + y∗Ã‖ ≥ ‖
k∑

i=1

αili + y∗A‖ − ‖
k∑

i=1

αi(l̃i − li)‖ − ‖y∗(Ã−A)‖

≥ c(
k∑

i=1

αi + ‖y∗‖)− ε(
k∑

i=1

αi + ‖y∗‖).

2

The following lemma is a reformulation of the extension of Hoffman’s one [13] to a Banach
space, obtained in [14, Theorem 3].

Lemma 2.2 Let A : X → Y be a linear continuous operator with closed range AX, and let
li ∈ X∗, i = 1, . . . , k. Then there is a constant CH > 0 such that, for any ξ = (ξ1, . . . , ξk) ∈ Rk,
η ∈ Y and x0 ∈ X satisfying

li x0 ≤ ξi, Ax0 = η, (10)

there is a solution x′ of the system

li (x0 + x′) ≤ 0, A(x0 + x′) = 0, (11)

such that
‖x′‖ ≤ CH

(
max{ξ+

1 , . . . , ξ
+
k }+ ‖η‖

)
, (12)

where ξ+
i = max{ξi, 0}.

3 Strong subregularity of the KKT system in mathematical pro-
gramming: two norms approach

In this section we return to consider the optimization problem (1) as stated in the introduction.
The main purpose will be to obtain sufficient conditions for appropriate metric subregularity
property of the optimality (KKT) map associate with this problem. As explained in the intro-
duction, due to the targeted application in optimal control we involve two norms in the space
X in which the decision variable lives. In the first subsection we begin with some notations and
known facts, followed by the assumptions needed for the subregularity result for the optimality
map, presented in the second subsection.
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3.1 The mathematical programming problem in a Banach space

The inequality constraints in problem (1) will shortly be written as f(x) ≤ 0, the inequality
meant component-wise. Let x̂ be an admissible point. Denote by I the set of active indices,

I = {i ∈ {1, . . . , k} : fi(x̂) = 0}.

Assuming that fi, i = 0, . . . , k, and g are (Fréchet) differentiable at x̂, we formulate the Mangasarian-
Fromovitz condition (constraint qualification) (MFCQ) in the following form:
(a) g′(x̂)X = Y , and (b) the functionals f ′i(x̂), i ∈ I, are positively independent on ker g′(x̂).

Remark 3.1 According to Lemma 2.1, MFCQ is equivalent to the following condition: AX is
closed, and the relations

αi ≥ 0 for i ∈ I, y∗ ∈ Y ∗,
∑
i∈I

αif
′
i(x̂) + y∗g′(x̂) = 0,

imply that αi = 0 for all i ∈ I, and y∗ = 0.

The following first-order necessary optimality condition for problem (1) is well known, see e.g.
[16, Theorem 3, Chapter 1].

Theorem 3.1 Let x̂ be a local minimum in problem (1). Assume that fi, i = 0, . . . , k, and g are
continuously differentiable around x̂ and that the Mangasarian-Fromovitz constraint qualification
holds at x̂. Then there exist multipliers ŷ∗ ∈ Y ∗ and α̂ ∈ Rk such that the triplet (x̂, ŷ∗, α̂) satisfies
the system

f ′0(x) + y∗g′(x) +
∑k

i=1 αif
′
i(x) = 0,

g(x) = 0,

α ≥ 0, αifi(x) = 0, i = 1, . . . , k,

f(x) ≤ 0.

The above relations are known as Karush-Kuhn-Tucker (KKT) system. It can be formulated
in a more compact way as

L′x(x, y∗, α) = 0, (13)

g(x) = 0, (14)

f(x)−NRk
+

(α) 3 0, (15)

where L(x, y∗, α) = f0(x) + y∗g(x) +
∑k

i=1 αifi(x) is the Lagrangian, and

NRk
+

(α) :=

{
{λ ∈ Rk : 〈λ, β − α〉 ≤ 0 for all β ∈ Rk

+} if α ∈ Rk
+,

∅ if α 6∈ Rk
+,

is the normal cone to Rk
+ at α ∈ Rk. Obviously NRk

+
(α) =

∏k
i=1NR+(αi), and (15) incorporates

the complementary slackness condition αifi(x) = 0. The triples (x̂, ŷ∗, α̂) satisfying the KKT
system (13)–(15) are called KKT points.
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Now we fix a (reference) KKT point (x̂, ŷ∗, α̂) (such exists if x̂ is a solution of the optimization
problem (1)) and split the set of active indices I for x̂ into two parts:

I0 = {i ∈ I : α̂i = 0}, I1 = {i ∈ I : α̂i > 0}. (16)

Note that α̂i = 0 for all i /∈ I. The following assumption, known as strict Mangasarian-Fromovitz
condition, is introduced in [19] in the case of finite-dimensional spaces X and Y .

Assumption 3.1 For the fixed KKT point (x̂, α̂, ŷ∗) the image g′(x̂)X is closed and the only pair
(y∗, α) ∈ Y ∗ × Rk that satisfies the relations

y∗g′(x̂) +
∑
i∈I

αif
′
i(x̂) = 0, αi ≥ 0 (i ∈ I0)

is y∗ = 0, α = 0.

Remark 3.2 It is proved in [19] (in the finite-dimensional case) that under Assumption 3.1
(x̂, α̂, ŷ∗) is the unique KKT point with the fixed x̂. The proof is straightforward also in the
Banach space setting, but this fact will also follow from Theorem 3.3 below.

In order to perform second order analysis of the optimization problem (1) we introduce,
consistently with the material in Subsection 2.1, a second norm in the space X, denoted by ‖ · ‖′,
which is weaker than ‖·‖, meaning that ‖x‖′ ≤ ‖x‖ for all x ∈ X. The dual space of X with respect
to this norm will be denoted by X ′′, thus X ′′ = {l ∈ X∗ : l is continuous with respect to ‖ · ‖′}.
(In the optimal control application in Section 4, for example, we use X = L∞, ‖ · ‖ = ‖ · ‖∞,
‖ · ‖′ = ‖ · ‖2.) The norm in X ′′, denoted by ‖ · ‖′′, is defined as usual:

‖l‖′′ := sup
‖x‖′≤1

|lx|, l ∈ X ′′.

Obviously, ‖l‖′′ ≥ ‖l‖ for every l ∈ X ′′. Below we use the notation θ(t) for any function (0,∞)→
R that converges to zero whenever t→ 0.

We make the following “two-norm differentiability” assumptions for the functions fi and g.

Assumption 3.2 There exists a neighborhood Ô of x̂ (in the norm ‖ · ‖) such that the following
conditions are fulfilled for i = 0, . . . , k and for all ∆x such that x̂+ ∆x ∈ Ô:

(i) The operator g and the functions fi are continuously Fréchet differentiable in Ô in the
norm ‖ · ‖, the derivatives f ′i(x̂) and g′(x̂) are continuous functionals/operator w.r.t. ‖ · ‖′, and

g(x̂+ ∆x) = g(x̂) + g′(x̂)∆x+ r(∆x),

fi(x̂+ ∆x) = fi(x̂) + f ′i(x̂)∆x+ ri(∆x),

with
‖r(∆x)‖Y ≤ θ(‖∆x‖)‖∆x‖′, |ri(∆x)| ≤ θ(‖∆x‖)‖∆x‖′.

(ii) There exist bilinear mappings Q : X ×X → Y and Qi : X ×X → R, i = 0, . . . , k, such
that

g′(x̂+ ∆x) = g′(x̂) +Q(∆x, ·) + r̄(∆x),

f ′i(x̂+ ∆x) = f ′i(x̂) +Qi(∆x, ·) + r̄i(∆x),
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‖Q(x1, x2)‖Y ≤ C‖x1‖′‖x2‖′, |Qi(x1, x2)| ≤ C‖x1‖′‖x2‖′ ∀x1, x2 ∈ X, (17)

where C is a constant and r̄ and r̄i satisfy

sup
‖x‖′≤1

‖r̄(∆x)(x)‖Y ≤ θ(‖∆x‖)‖∆x‖′, ‖r̄i(∆x)‖′′ ≤ θ(‖∆x‖)‖∆x‖′.

It is an easy exercise to show that under Assumption 3.2 one can represent

g(x̂+ ∆x) = g(x̂) + g′(x̂)∆x+
1

2
Q(∆x,∆x) + r̂(∆x),

fi(x̂+ ∆x) = fi(x̂) + f ′i(x̂)∆x+
1

2
Qi(∆x,∆x) + r̂i(∆x), i = 0, . . . , k,

where
‖r̂(∆x)‖Y ≤ θ(‖∆x‖)(‖∆x‖′)2, |r̂i(∆x)| ≤ θ(‖∆x‖)(‖∆x‖′)2.

Define the quadratic functional Ω : X → R as

Ω(x) := Q0(x, x) +
∑
i∈I1

α̂iQi(x, x) + ŷ∗Q(x, x). (18)

The following lemma is also quite obvious.

Lemma 3.1 The following representation holds:

L(x̂+ ∆x, α̂, ŷ∗) = f0(x̂) +
1

2
Ω(∆x) + rL(∆x), (19)

where |rL(∆x)| ≤ θ(‖∆x‖) (‖∆x‖′)2.

Define the so-called critical cone for the KKT point (x̂, α̂, ŷ∗) as

K := {δx ∈ X : g′(x̂)δx = 0, f ′i(x̂)δx ≤ 0 for i ∈ I ∪ {0}}.

It is easy to verify that the above definition is equivalent to the following one:

K := {δx ∈ X : g′(x̂)δx = 0, f ′i(x̂)δx ≤ 0 for i ∈ I0, f ′i(x̂)δx = 0 for i ∈ I1}.

Assumption 3.3 There exists a constant c0 > 0 such that

Ω(δx) ≥ c0 (‖δx‖′)2 ∀ δx ∈ K.

We formulate the following second-order sufficiency theorem, which is similar to that in the
single-norm case, see e.g. [20, pp. 146-148]). The proof is given for completeness.

Theorem 3.2 Let Assumption 3.2 be fulfilled for the triple ŝ := (x̂, ŷ∗, α̂) ∈ X × Y ∗ × Rk, let ŝ
be a KKT point, and let Assumptions 3.1 and 3.3 be fulfilled for this point. Then the following
quadratic growth condition for the objective function f0 holds at the point x̂: there exist c > 0
and ε > 0 such that

f0(x)− f0(x̂) ≥ c (‖x− x̂‖′)2

for all admissible x such that ‖x− x̂‖ < ε. Hence, x̂ is a strict local minimizer in the problem.
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Proof. Let x = x̂+ ∆x be an admissible point with ‖∆x‖ ≤ ε, where ε > 0 will be fixed later as
sufficiently small. Using Lemma 3.1 we have

γ(x) := f0(x)− f0(x̂) = L(x, ŷ∗, α̂)− ŷ∗g(x)−
k∑

i=1

α̂ifi(x)− f0(x̂)

≥ L(x, ŷ∗, α̂)− f0(x̂) =
1

2
Ω(∆x) + rL(∆x). (20)

From Assumption 3.2(i) we obtain that

g′(x̂)∆x = −r(∆x),

f ′0(x̂)∆x = γ(x)− r0(∆x), f ′i(x̂)∆x ≤ −ri(∆x), i ∈ I.

According to Lemma 2.2, there exists δx ∈ X such that

g′(x̂)δx = 0, f ′i(x̂)δx ≤ 0, i ∈ I ∪ {0}

(which means that δx ∈ K) and

‖δx−∆x‖ ≤ CH(‖r(∆x)‖+ max{|γ(x)|+ |r0(∆x)|, |ri(∆x)|, i ∈ I})
≤ θ(‖∆x‖) ‖∆x‖′ + |γ(x)|.

From the inequality ‖a‖2 ≥ ‖b‖2 − 2‖b‖‖a− b‖, we get

(‖δx‖′)2 ≥ (‖∆x‖′)2 − 2‖∆x‖′‖δx−∆x‖
≥ (‖∆x‖′)2 − 2θ(‖∆x‖)(‖∆x‖′)2 − 2|γ(x)|‖∆x‖′.

Using Assumption 3.2(ii) one can easily estimate

|Ω(δx)− Ω(∆x)| ≤ c1‖δx−∆x‖′ ‖δx+ ∆x‖′.

Then (20) leads to the inequality

γ(x) ≥ 1

2
Ω(δx)− c2

(
θ(‖∆x‖) (‖∆x‖′)2 + ‖∆x‖′|γ(x)|+ (γ(x))2

)
,

where c1 and c2 are constants. Finally, using Assumption 3.3 we obtain that

Ω(δx) ≥ c0(‖δx‖′)2 ≥ c0(‖∆x‖′)2 − 2c0θ(‖∆x‖)(‖∆x‖′)2 − 2c0|γ(x)|‖∆x‖′.

Consequently,

γ(x) ≥ 1

2
c0(‖∆x‖′)2 − c3

(
θ(‖∆x‖) (‖∆x‖′)2 + ‖∆x‖′|γ(x)|+ (γ(x))2

)
,

with some c3 > 0, which implies the desired estimate, provided that ε > 0 is fixed sufficiently
small. 2
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3.2 Strong Metric subregularity of the KKT system

In this subsection we investigate the subregularity property SMSr2 (see Definition 2.1) of the
KKT mapping

F(x, y∗, α) :=

 L′x(x, y∗, α)
g(x)

f(x)−NRk
+

(α)

 (21)

appearing in the KKT system (13)–(15) for problem (1). As in Subsection 3.1, we consider a
reference KKT point ŝ = (x̂, ŷ∗, α̂) (that is a point satisfying 0 ∈ F(ŝ)) for which assumptions
3.1–3.3 are fulfilled.

Define the space X := X × Y ∗ × Rk with the following two norms (see Subsection 3.1):

‖s‖X := ‖x‖+ ‖y∗‖+ |α| and ‖s‖′X := ‖x‖′ + ‖y∗‖+ |α|, s = (x, y∗, α) ∈ X .

Also define Z := X ′′ × Y × Rk with the following norm: for z = (ζ, η, ξ) ∈ Z

‖z‖Z = ‖ζ‖′′ + ‖η‖+ |ξ|.

Observe that due to Assumption 3.2(i) we have y∗g′(x̂) ∈ X ′′, and also f ′i(x̂) ∈ X ′′. Thus
F : X ⇒ Z.

Our intension is to apply Theorem 2.1, for which we formally “linearize” the single-valued
part of the mapping F , using Assumption 3.2, but also include (for convenience) two quadratic
terms. For any s = (x, y∗, α) ∈ X denote ∆x = x− x̂, ∆y∗ = y∗ − ŷ∗, ∆α = α− α̂, ∆s = s− ŝ.
To shorten the notation we set

A := g′(x̂), li := f ′i(x̂), i = 0, . . . , k, l := (l1, . . . , lk)>, f := (f1, . . . , fk)>,

where the superscript > means transposition. Define the set-valued mapping

L(s) :=


Q0(∆x, ·) + ŷ∗Q(∆x, ·) + ∆y∗A

+
∑k

i=1 α̂iQi(∆x, ·) +
∑k

i=1 ∆αili +D(∆s)
A∆x

f(x̂) + l∆x−NRk
+

(α)

, (22)

where D(∆s) = ∆y∗Q(∆x, ·) +
∑k

i=1 ∆αiQi(∆x, ·) ∈ X∗ is a quadratic term. The definition of L
is the result of the formal linearization using Assumption 3.2(ii) for the first component (where
also D(∆s) is added), and Assumption 3.2(i) for the second and the third component. Due to
the same assumptions L maps X to (the subsets of) Z.

Lemma 3.2 Let assumptions 3.1 and 3.3, and the inequalities (17) be fulfilled for A, Q, li and
Qi. Then there exist numbers â > 0, b̂ > 0 and κ̂ ≥ 0 such that the mapping L has the property
SMSr2 (Definition 2.1) at ŝ for ẑ = 0 with neighborhoods Oŝ = IBX(x̂; â)×Y ∗×Rk, O0 = IBZ(0; b̂)
and constant κ̂.

Proof. The numbers â and b̂ will be adjusted later in the proof. Take arbitrarily z = (ζ, η, ξ) ∈
IBZ(0; b̂) and let s = (x, y∗, α), with x ∈ IB(x̂; â), be a solution of the inclusion

L(s) 3 z. (23)
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Clearly, α̂i > 0 if and only if i ∈ I1. Let â > 0 and b̂ > 0 be fixed so small that for every i 6∈ I
(where fi(x̂) < 0) we have that fi(x̂) + li∆x < ξi. Then from the complementary slackness we
obtain that αi = 0 for i 6∈ I. Then ∆αi = 0 for i 6∈ I. Moreover, for i ∈ I we have fi(x̂) = 0.
Then (23) implies the following relations:

Q0(∆x, ·) + ŷ∗Q(∆x, ·) + ∆y∗A

+
∑
i∈I1

α̂iQi(∆x, ·) +
∑
i∈I

∆αili +D(∆s) = ζ, (24)

A∆x = η, (25)

li ∆x− ξi ∈ NR+(αi), i ∈ I. (26)

Now we shall estimate |∆α| and ‖∆y∗‖ by ‖∆x‖ and ‖ζ‖. For that, we present (24) in the form

∆y∗A+
∑
i∈I1

∆αili +
∑
i∈I0

∆αili

= ζ −Q0(∆x, ·)− ŷ∗Q(∆x, ·)−
∑
i∈I1

α̂iQi(∆x, ·)−D(∆s). (27)

Note that ∆αi ≥ 0, i ∈ I0. Define the map Ā : X → Y × R|I1| as Āx = (Ax, {ljx}j∈I1), where
|I1| is the number of elements of I1. Due to Assumption 3.1, the functionals {li}i∈I1 are linearly
independent on kerA. This, together with the surjectivity of A implies that Ā is surjective.
Again from Assumption 3.1, we have that {li}i∈I0 are positively independent on kerĀ. Applying
Proposition 2.1, we obtain that∥∥∥∆y∗A+

∑
i∈I

∆αili

∥∥∥ ≥ c(‖∆y∗‖+
∑
i∈I
|∆αi|

)
=: cΘ. (28)

The left-hand side of this inequality can be estimated from (27). For that we use that due to
(17)

‖ŷ∗Q(∆x, ·)‖′′ = sup
‖x‖′=1

|ŷ∗Q(∆x, x)| ≤ ‖ŷ∗‖ sup
‖x‖′=1

‖Q(∆x, x)‖Y ≤ ‖ŷ∗‖C‖∆x‖′,

and similarly, ‖Qi(∆x, ·)‖′′ ≤ C‖∆x‖′. For the quadratic term we have due to (17) that

‖D(∆s)‖ ≤ ‖D(∆s)‖′′

≤ ‖∆y∗‖ ‖Q(∆x, ·)‖′′ +
k∑

i=1

|∆αi| ‖Qi(∆x, ·)‖′′ ≤ ΘC‖∆x‖′. (29)

Then (28) and (27) imply that for some constants c1, c2,

cΘ ≤ ‖ζ‖+ c1‖∆x‖′ + c2Θ‖∆x‖′.

Assuming that â (hence also ‖∆x‖) is sufficiently small, we deduce that there is a constant c3

such that
‖∆y∗‖+ |∆α| ≤ c3(‖∆x‖′ + ‖ζ‖) ≤ c3(‖∆x‖′ + ‖ζ‖′′). (30)

One consequence of this estimate is that αi > 0 for i ∈ I1, provided that â > 0 and b̂ are
chosen sufficiently small. Hence, using the complementary slackness we obtain that li∆x− ξi = 0
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for i ∈ I1. For i ∈ I0 it holds that ∆αi = αi. Again from the complementary slackness we have
li∆x− ξi = 0 if αi > 0. Thus, in all cases ∆αi(li∆x− ξi) = 0 for i ∈ I. Then we can estimate∣∣∣∑

i∈I
∆αili∆x

∣∣∣ ≤∑
i∈I
|∆αi| |ξi| ≤ c3(‖∆x‖′ + ‖ζ‖′′) |ξ|. (31)

Now we “multiply” (24) by ∆x, (25) by ∆y∗, and having in mind the definition of Ω in (18),
we obtain that

Ω(∆x) + (∆y∗A)∆x+
∑
i∈I

∆αili∆x+D(∆s)∆x = ζ ∆x,

∆y∗(A∆x) = ∆y∗ η.

Subtracting the second from the first gives

Ω(∆x) +
∑
i∈I

∆αili∆x+D(∆s)∆x = ζ ∆x−∆y∗ η. (32)

Inclusion (26) implies that

li ∆x ≤ ξi for i ∈ I0,

li ∆x = ξi for i ∈ I1.

We apply Lemma 2.2 to this system extended with (25), and obtain that there exist δx ∈ X such
that

‖δx−∆x‖ ≤ CH(|ξ|+ ‖η‖) ≤ CH‖z‖ (33)

and
li δx ≤ 0 for i ∈ I0, li δx = 0 for i ∈ I1, A δx = 0.

This means that δx ∈ K. As in the proof of Theorem 3.2, we estimate

|Ω(∆x)− Ω(δx)| ≤ c1(‖∆x+ δx‖′)(‖∆x− δx‖′) ≤ cΩ (‖∆x‖′ + ‖δx‖′) ‖z‖

with cΩ = c1CH . Then from (32) and (31) we obtain that

Ω(δx) ≤ |Ω(∆x)|+ |Ω(∆x)− Ω(δx)|

≤
∣∣∣∑
i∈I

∆αili∆x+D(∆s)∆x− ζ ∆x+ ∆y∗ η
∣∣∣

+cΩ (‖∆x‖′ + ‖δx‖′) ‖z‖
≤ c3(‖∆x‖′ + ‖z‖) ‖z‖+ |D(∆s)∆x|+ ‖ζ‖′′ ‖∆x‖′

+‖∆y∗‖ ‖η‖+ cΩ (‖∆x‖′ + ‖δx‖′) ‖z‖. (34)

From (29) and (30) we estimate

|D(∆s)∆x| ≤ C(‖∆y∗‖+ |∆α|)‖∆x‖′ ‖∆x‖ ≤ Cc3(‖∆x‖′ + ‖z‖)‖∆x‖′ ‖∆x‖.

Using Assumption 3.3, the last inequality, (30), and (33) (which implies ‖∆x‖′ ≤ ‖δx‖′+CH‖z‖)
we obtain from (34) that there exists constants c4 and c5 such that

c0(‖δx‖′)2 ≤ Ω(δx) ≤ c4

(
‖δx‖′‖z‖+ ‖z‖2

)
+ c5(‖δx‖′)2 ‖∆x‖.
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Assuming that â > 0 and b̂ are sufficiently small (such that c5â < c0), for an appropriate constant
c̄ we obtain the inequality

(‖δx‖′)2 ≤ c̄
(
‖δx‖′‖z‖+ ‖z‖2

)
.

This implies

‖δx‖′ ≤ ĉ‖z‖ with ĉ =
c̄+
√
c̄2 + 4c̄

2
.

Then from (33) we have

‖∆x‖′ ≤ ‖δx‖′ + ‖δx−∆x‖′ ≤ ĉ‖z‖+ ‖δx−∆x‖ ≤ (ĉ+ CH)‖z‖.

This together with (30) completes the proof. 2

The main result in this section follows.

Theorem 3.3 Let ŝ = (x̂, ŷ∗, α̂) be a KKT point for problem (1), and let assumptions 3.1–3.3
be fulfilled at this point. Then the KKT mapping F defined in (21) has the property SMSr2 at
ŝ for zero. More precisely, there exist constants a > 0, b > 0 and κ ≥ 0 such that for every
z = (ζ, η, ξ) ∈ IBZ(0; b) (i.e. such that ‖ζ‖′′ + ‖η‖+ |ξ| ≤ b) and for every solution s = (x, y∗, α)
of the inclusion z ∈ F(s) with ‖x− x̂‖ ≤ a it holds that

‖s− ŝ‖′ = ‖x− x̂‖′ + ‖y∗ − ŷ∗‖+ |α− α̂| ≤ κ‖z‖ = κ(‖ζ‖′′ + ‖η‖+ |ξ|).

Proof. We shall apply Theorem 2.1 for the mappings L in (22) and the function ϕ, which is
the difference between the single-valued parts of F and L, so that F = ϕ + L. Namely, having
in mind Lemma 3.2, we have to ensure existence of numbers a > 0, b > 0, µ ≥ 0 and κ such
conditions (7) are satisfied with the specific form of the neighborhood Oŝ in Lemma 3.2. It is
enough to fix µ = 1/2κ̂, κ = 2κ̂, a = â, b = b̂/2 and to ensure that the following inequalities are
fulfilled:

‖ϕ(s)− ϕ(ŝ)‖ ≤ µ‖s− ŝ‖′ ≤ b ∀ s = (x, y∗, α) with x ∈ IB(x̂; â).

Clearly, the numbers â and b̂ in Lemma 3.2 can be assumed as small as necessary, because the
property SMSr2 remains true when decreasing the neighborhoods in its definition. In particular,
â has to be so small that IBX(x̂; â) ⊂ Ô in order to utilize Assumption 3.2.

For the second component of ϕ we have the following estimate using Assumption 3.2(i):

‖g(x)−A∆x‖ = ‖g(x)− (g(x̂) + g′(x̂)∆x)‖
≤ ‖r(∆x)‖ ≤ θ(‖∆x‖)‖∆x‖′ ≤ (µ/3)‖∆x‖′,

provided that â > 0 is sufficiently small. Similarly we treat the third component of ϕ (note
that this third component vanishes for all i /∈ I). The first one, denoted further by ϕL ∈ X ′′,
requires more attention. After substitution of the expressions for f ′i(x̂+∆x) and g′(x̂+∆x) from
Assumption 3.2(ii) in L′x(x, y∗, α), the somewhat long expression for ϕL reduces to

ϕL(s) = r̄0(∆x) + y∗r̄(∆x) +

k∑
i=1

αir̄i(∆x).
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In order to estimate ϕL it is enough to prove that y∗ and α are uniformly bounded when ‖∆x‖ ≤ â
and ‖ζ‖ ≤ b. Since the non-active constraints for x̂ remain non-active for x when â is sufficiently
small, we have that αi = 0 for i 6∈ I. Then inclusion z ∈ F(s) implies

f ′0(x) + y∗g′(x) +
∑
i∈I

αif
′
i(x) = ζ.

Since the vectors li = f ′i(x̂) are positively independent on kerA (see Assumption 3.1), and f ′i and
g′ are continuous around x̂, Proposition 2.2 gives that there is a constant C̄ such that

‖y∗‖+ |α| ≤ C̄ whenever x ∈ IBX(x̂; â), ‖ζ‖ ≤ b, â, b – sufficiently small.

Now all terms in the expression for ϕL can be directly estimated from Assumption 3.2(ii). For
example,

‖ŷ∗r̄(∆x)‖′ = sup
‖x‖′≤1

|ŷ∗r̄(∆x)x| ≤ ‖ŷ∗‖ sup
‖x‖′≤1

|r̄(∆x)x| ≤ Cθ(‖∆x‖)‖∆x‖′,

and Cθ(‖∆x‖) can be made sufficiently small by choosing â small enough. This completes the
proof of the theorem. 2

4 Application of Abstract Result: SMsR in the Mayer Problem

In this section we apply the obtained abstract subregularity result (Theorem 3.3) to the Mayer-
type optimal control problem (3)–(6). An important feature is that general initial/terminal
constraints for the state are involved.

4.1 Subregularity of the Lagrange (KKT) optimality mapping

First, we will directly translate the results in the previous section to the Mayer problem (3)–
(6). For now, we assume that the functions h, ψj and ϕi, appearing in (3)–(6) are continuously
differentiable. We consider this problem for trajectory-control pairs w(·) = (x(·), u(·)) with
measurable and essentially bounded u : [t0, t1]→ Rm and absolutely continuous x : [t0, t1]→ Rn.
Thus the admissible points in the problem belong to the space

W := W 1,1([t0, t1];Rn)× L∞([t0, t1];Rm) =: W 1,1 × L∞

with the norm

‖w‖ = ‖x‖1,1 + ‖u‖∞= |x(t0)|+
∫ t1

t0

|ẋ(t)| dt+ ess sup
t∈[t0.t1]

|u(t)|.

The mapping g and the functions fi in the abstract problem (1) will be specified as follows.
With the notations

q := (x(t0), x(t1)), G(x, u) := h(x, u)− ẋ, ψ = (ψ1, . . . , ψs), ϕ = (ϕ1, . . . , ϕk),
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we set

W 3 (x, u) 7→ g(x, u) :=
(
G(x, u), ψ(q)

)
∈ L1 × Rs =: Y, (35)

W 3 (x, u) 7→ f(x, u) := ϕ(q) ∈ Rk.

Further on we use the similar abbreviations

q̂ := (x̂(t0), x̂(t1)), δq := (δx(t0), δx(t1)), . . . (36)

Due to the continuous differentiability of ϕi, the functions fi, i = 0, 1, . . . , k, are also contin-
uously differentiable and the Fréchet derivative of fi at a point w = (x, u) is the linear functional

W 3 (δx, δu) 7→ f ′i(w)(δx, δu) = ϕ′i(q)δq ∈ R, i = 0, 1, . . . , k. (37)

Notice that when the functionals f ′i(w) and ϕ′i(q) are considered as vectors, they are treated as
vector-rows, while the elements of the “primal” space, δx, δu, etc. are vector-columns. The same
applies to the other linear functionals that will appear later. Also note that in order to make
(37) consistent with the matrix calculus, (δx, δu) should be understood as a vector column of
dimension n+m.

Since the norm for the u-components of the elements of W is L∞, the mapping g is also
continuously Fréchet differentiable and its derivative g′(w) : W → L1 × Rs at w ∈ W is the
continuous linear operator defined as

g′(w)δw =
(
h′(w)δw − δẋ, ψ′(q)δq

)
=:

(
G′(w)δw, ψ′(q)δq

)
, ∀ δw = (δx, δu) ∈ W, (38)

where h′(w)δw = hx(x, u)δx + hu(x, u)δu and the derivative G′(w) of G at w is defined by
G′(w)δw = h′(w)δw − δẋ. Since the operator G′(w) : W → L1 is surgective, and the operator
w ∈ W → ψ′(q)δq ∈ Rs is finite dimensional, the operator g′(w) : W → L1 × Rs has a closed
image, see e.g. [5, Corollary 3.3].

The dual space to Y is Y ∗ = L∞×Rs with elements y∗ = (p, β). Then the Lagrange function
associated with problem (3)-(6) takes the form

L(w, y∗, α) = L(x, u, p, β, α) = ϕ0(q) + p(−ẋ+ h(x, u)) + βψ(q) + αϕ(q),

where pv =
∫ t1
t0
p(t)v(t) dt for v ∈ L1 (see also notational convention (36)). Its derivative

Lw(w, p, β, α) ∈ W∗ = (W 1,1)∗ × (L∞)∗ acts on δw ∈ W as

Lw(w, p, β, α)(δw)

= ϕ′0(q)δq +

∫ t1

t0

p(t) (h′(w(t))δw(t)− δẋ(t)) dt+ βψ′(q)δq + αϕ′(q)δq. (39)

We remind that h′(w)δw − δẋ maps W to L1 and

pG′(w)δw = p(h′(w)δw − δẋ) =

∫ t1

t0

p(t)
(
h′(w(t))δw(t)− δẋ(t)

)
dt. (40)

Let ŵ = (x̂, û) be an admissible pair. As in Section 3 we denote

I := {i ∈ {1, . . . , k} : ϕi(q̂) = 0}.
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Taking into account that the operator g′(ŵ) : W → L1 × Rs has a closed image, we translate to
the Mayer problem the Mangasarian-Fromovitz condition at ŵ in the form as in Remark 3.1: the
relations

αi ≥ 0 for i ∈ I, (p, β) ∈ L∞ × Rs, pG′(ŵ) + βψ′(q̂) +
∑
i∈I

αiϕ
′
i(q̂) = 0 (41)

imply that αi = 0 for i ∈ I, β = 0, p = 0. We remind that local minimum in the normW is called
weak local minimum. Then Theorem 3.1 implies the following well-known first-order optimality
condition (see e.g. [24, page 24]).

Theorem 4.1 Let ŵ = (x̂, û) be a weak local minimum in problem (3)-(6). Assume that all the
functions h, ψj, ϕi are continuously differentiable and that the Mangasarian-Fromovitz condition

holds at ŵ. Then there exist multipliers p̂ ∈ L∞, β̂ ∈ Rs, α̂ ∈ Rk such that the tuple (ŵ, p̂, β̂, α̂)
satisfies the system:

Lw(w, p, β, α) = 0,

−ẋ+ h(w) = 0,

ψ(q) = 0,

α ≥ 0, ϕ(q) ≤ 0, αϕ(q) = 0,

where q := (x(t0), x(t1)).

We remind that the relations in the last exposed line are equivalent to ϕ(q) ∈ NRk
+

(α). Then

the KKT optimality mapping for the Mayer problem in consideration is

F(x, u, p, β, α) :=


Lw(x, u, p, β, α)
−ẋ+ h(x, u)

ψ(q)
ϕ(q)−NRk

+
(α)

 , (42)

and the optimality system of Theorem 4.1 is equivalent to the condition 0 ∈ F(x, u, p, β, α).
Introduce the space X with elements s = (x, u, p, β, α) ∈ W 1,1 × L∞ × L∞ × Rs × Rk, in which
the mapping F is defined. Our goal in this subsection is to obtain sufficient conditions for the
subregularity property SMSr2 (Definition 2.1) of the mapping F by applying Theorem 3.3. For
that we introduce a second norm in the space W as

‖w‖′ := ‖x‖1,1 + ‖u‖2.

Clearly, we have
‖w‖′ ≤ c‖w‖ ∀w ∈ W

with an appropriate constant c. Hence, the norm ‖ · ‖′ is weaker than the norm ‖ · ‖. Correspond-
ingly, the dual space of W with respect to this norm, denoted by W ′′ as in the previous section,
is (W 1,1)∗ × L2, with the norm

‖(π, ρ)‖′′ := sup
‖x‖1,1≤1

πx+ ‖ρ‖2.

The strict MFCQ (Assumption 3.1) takes the following form. For a given admissible reference
point ŵ = (x̂, û) and multipliers p̂, β̂, α̂ define

I0 = {i ∈ I : α̂i = 0}, I1 = {i ∈ I : α̂i > 0}.
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Assumption 4.1 The relations

αi ≥ 0 for i ∈ I0, (p, β) ∈ L∞ × Rs, pG′(ŵ) + βψ′(q̂) +
∑
i∈I

αiϕ
′
i(q̂) = 0

imply that αi = 0 for i ∈ I, β = 0, p = 0.

Assumption 4.2 The functions h, ψj , j = 1, . . . , s and ϕi, i = 0, . . . , k are twice continuously
differentiable.

Let us check that Assumption 3.2 is fulfilled. Both points (i) and (ii) are obviously fulfilled
for fi(x, u) = ϕi(x(t0), x(t1)) and for the second component (x, u) 7→ ψ(x(t0), x(t1)) of g in (35),
because of Assumption 4.2 and the inequality

|x(ti)− x̃(ti)| ≤ ‖x− x̃‖1,1 ≤ ‖w − w̃‖′ ∀w = (x, u), w̃ = (x̃, ũ) ∈ W, i = 0, 1.

Let us check point (i) for the mapping G:

G(ŵ + ∆w)−G(w) = h(ŵ + ∆w)− h(ŵ)−∆ẋ = G′(ŵ)∆w + r(∆w),

where the above relations should be understood point-wise (for a.e. t) and

‖r(∆w)‖1 ≤
∫ t1

t0

θ(|∆w(t)|) |∆w(t)| dt ≤ θ(‖∆w‖∞)‖∆w‖2 ≤ θ(‖∆w‖)‖∆w‖′

(notice that, according to the convention before Assumption 3.2, θ may change from place to
place).

Let us check point (ii) for the mapping G′(w) with Q(w1, w2) = h′′(ŵ)(w1, w2):

(G′(ŵ + ∆w)−G′(ŵ))(w) = h′(ŵ + ∆w)(w)− h′(ŵ)(w)
= h′′(ŵ)(∆w,w) + r̄(∆w)(w),

where as above ‖r̄(∆w)(w)‖1 ≤ θ(‖∆w‖)‖w‖′ and

‖Q(w1, w2)‖ ≤ c‖w1‖2 ‖w2‖2 ≤ c1‖w1‖′ ‖w2‖′.

Thus Assumption 3.2 is fulfilled.
Next, we define the quadratic functional Ω on W. For this it is convenient to introduce the

Humiltonian (Pontryagin function) and the endpoint Lagrange function:

H(x, u, p) = p h(x, u), l(q, α, β) = ϕ0(q) +
∑
i∈I1

αiϕi(q) + βψ(q). (43)

Then, having in mind the expressions for the respective derivatives, the expression in (18) becomes

Ω(δw) = 〈lqq(q̂, α̂, β̂)δq, δq〉+

∫ t1

t0

〈Hww(x̂, û, p̂)(t)δw(t), δw(t)〉 dt,

where
〈Hww(x̂, û, p̂) δw, δw〉

= 〈Hxx(x̂, û, p̂)δx, δx〉+ 2〈Hux(x̂, û, p̂)δx, δu〉+ 〈Huu(x̂, û, p̂)δu, δu〉.
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The critical cone K at the point (x̂, û) takes the form

K = {(δx, δu) ∈W 1,1 × L∞ : δẋ = hx(x̂, û)δx+ hu(x̂, û)δu,
ψ′(q̂)δq = 0, ϕ′i(q̂)δq ≤ 0, i ∈ I ∪ {0}},

where δq = (δx(t0), δx(t1)). As in the general case (Subsection 3.1), the critical cone can be
equivalently defined as the set of those pairs (δx, δu) ∈W 1,1 × L∞ which satisfy

δẋ = hx(x̂, û)δx+ hu(x̂, û)δu, ψ′(q̂)δq = 0,
ϕ′i(q̂)δq ≤ 0, i ∈ I0, ϕ′i(q̂)δq = 0, i ∈ I1.

The following condition repeats Assumption 3.3 (the coercivity condition) with the meaning
of the notations from the present subsection:

Assumption 4.3 (Coercivity) There exists a constant c0 > 0 such that

Ω(δw) ≥ c0 (‖δw‖′)2 ∀ δw ∈ K.

Remark 4.1 It is well-known and easy to prove that the coercivity condition is equivalent to
the following simpler one: there is a constant c′0 > 0 such that

Ω(δw) ≥ c′0 (|δx(t0)|2 + ‖δu‖22) ∀ δw ∈ K.

Then Theorem 3.3 directly implies the property SMSr2 of the mapping F in (42). The
elements of the image space, Z (which are considered as disturbances of F) will be denoted by

z = (ζ, η, µ, ξ) ∈ Z :=W ′′ × L1 × Rs × Rk = (W 1,1)∗ × L2)× L1 × Rs × Rk,

so that the inclusion z ∈ F(s) reads as
ζ
η
µ
ξ

 ∈


Lw(x, u, p, β, α)
−ẋ+ h(x, u)

ψ(q)
ϕ(q)−NRk

+
(α)

 .

Theorem 4.2 Let ŝ = (x̂, û, p̂, β̂, α̂) ∈ X be a solution of the inclusion 0 ∈ F(s), and let assump-
tions 4.1–4.3 be fulfilled at this point. Then there exist constants a > 0, b > 0 and κ ≥ 0 such
that for every z = (ζ, η, µ, ξ) ∈ Z with ‖z‖ := ‖ζ‖′′ + ‖η‖1 + |µ| + |ξ| ≤ b and for every solution
s = (x, u, p, β, α) ∈ X of the inclusion z ∈ F(s) with ‖x− x̂‖1,1 + ‖u− û‖∞ ≤ a it holds that

‖x− x̂‖1,1 + ‖u− û‖2 + ‖p− p̂‖∞ + |β − β̂|+ |α− α̂| ≤ κ‖z‖.

4.2 Subregularity of the Pontryagin optimality mapping

It is reasonable to restrict the considerations of disturbances ζ ∈ (W 1,1)∗ × L2 to such having
representatives by triplets (π, ν, ρ) ∈ L1 × R2n × L2:

ζ δw = νδq +

∫ t1

t0

[π(t)δx(t) + ρ(t)δu(t)] dt, (44)
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where δq = (δx(t0), δx(t1)) (we remind the convention (36)) and ν = (ν0, ν1). Thus we consider
the space of disturbances

Ẑ =
{

(π, ν, ρ, η, µ, ξ) ∈ L1 × R2n × L2 × L1 × Rs × Rk
}
.

Let Assumption 4.2 be fulfilled. The following lemma, extending [25, Lemma 2], plays the
key role in this subsection.

Lemma 4.1 The equation Lw(x, u, p, β, α) = ζ, with (x, u) = w ∈ W, p ∈ L∞, α ∈ Rk, β ∈ Rs,
and ζ having the representation (44) with (π, ν, ρ) ∈ L∞ × R2n × L2, is equivalent to the system

0 = ṗ+ p hx(w)− π, (45)

0 = phu(w)− ρ, (46)

0 = (p(t0),−p(t1)) + ϕ′0(q) + αϕ′(q) + βψ′(q)− ν, (47)

with p ∈W 1,1 and ρ ∈ L∞.

Proof. 1. Let Lw(x, u, p, β, α) = ζ as in the formulation of the lemma. Then from (39),

lq(q, α, β)δq +

∫ t1

t0

p
(
h′(w)δw − δẋ

)
dt = νδq +

∫ t1

t0

(
πδx+ ρδu

)
dt ∀ δw ∈ W,

where l as in (43). Setting δx = 0, due to the arbitrariness of δu ∈ L∞, we obtain (46), and hence
ρ ∈ L∞.

Let for an arbitrary function v ∈ L1 the function δx be any solution of the equation

δẋ(t) = hx(w(t))δx(t)− v(t).

Then, also using (46), we have

lq(q, α, β)δq +

∫ t1

t0

p v dt = νδq +

∫ t1

t0

πδxdt. (48)

Let p̄ ∈W 1,1 be any solution of the equation

− ˙̄p(t) = p̄(t)hx(w(t))− π(t).

Integration by parts gives

p̄(t1)δx(t1)− p̄(t0)δx(t0) =

∫ t1

t0

d

dt
(p̄(t)δx(t)) dt

=

∫ t1

t0

(−p̄(t)hx(w(t)) + π(t))δx(t) dt+

∫ t1

t0

p̄(t)(hx(w(t))δx(t)− v(t)) dt

=

∫ t1

t0

(π(t)δx(t)− p̄(t)v(t)) dt.

If p̄ and δx are chosen so that

p̄(t1)δx(t1)− p̄(t0)δx(t0) = lq(q, α, β)δq − νδq (49)
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(say, δx(t0) = 0 and p(t1) = lq1(q, α, β)− ν1), then

lq(q, α, β)δq +

∫ t1

t0

p̄v dt =

∫ t1

t0

πδxdt+ νδq.

Subtracting this equality from (48), we obtain that
∫ t1
t0

(p− p̄)v dt = 0. Since v ∈ L1 is arbitrarily

chosen, we obtain that p = p̄. Thus p ∈W 1,1 and satisfies (45).
Let us represent ν = (ν0, ν1) ∈ Rn×Rn, lq(q, α, β) = (l0, l1) ∈ Rn×Rn, and (δx(t0), δx(t1)) =

(q0, q1). We still have the freedom to choose the initial or the final condition for p̄ and δx so that
(49) is satisfied. One way is to choose δx(t0) = 0 and p̄(t1) = l1 − ν1 (as already said), another
way is to choose δx(t1) = 0 and p̄(t0) = −l0 + ν0. In both cases, the corresponding function p̄ is
the same, equal to p. Thus (47) is also satisfied by p.

2. Now let us prove the converse claim. Summing (45) and (46), the first multiplied by δx ∈W 1,1

and the second multiplied by δu ∈ L∞, and then integrating over the segment [t0, t1], results in
the equality (where δw = (δx, δu) ∈ W)∫ t1

t0

ṗδxdt+

∫ t1

t0

phw(w)δw dt−
∫ t1

t0

(πδx+ ρδu) dt = 0.

Integrating by parts the first term and using (47), we obtain that(
lq(q, α, β)− ν

)
δq +

∫ t1

t0

(
− pδẋ+ p hw(w)δw − πδx− ρδu

)
dt = 0.

Having in mind (39),(44) and the arbitrariness of δw ∈ W, this gives
Lw(x, u, p, β, α) = ζ. 2

The following assumption strengthens Assumption 4.1.

Assumption 4.4 The relations

αi ≥ 0 for i ∈ I0, (p, β) ∈W 1,1 × Rs, (50)

ṗ = −p hx(ŵ), phu(ŵ) = 0, (−p(t0), p(t1)) =
∑
i∈I

αiϕ
′
i(q̂) + βψ′(q̂) (51)

imply that αi = 0 for i ∈ I, β = 0, p = 0.

Let us show that Assumption 4.4 implies Assumption 4.1 for optimal control problem (3)–(6).
By Lemma 4.1, system (50)–(51) is equivalent to the equation Lw(x̂, û, p, β, α) = ζ, where ζ is
represented by the triple (π, ν, ρ) in the form (44) with π = 0, ρ = 0 and ν = ϕ′0(q̂). Using also
(39) in this equation, we get∫ t1

t0

p (h′(ŵ)δw − δẋ) dt+ βψ′(q̂)δq + αϕ′(q̂)δq = 0.

According to (40), the latter is equivalent to

pG′(ŵ)δw + βψ′(q̂)δq + αϕ′(q̂)δq = 0 ∀ δw ∈ W.
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In view of (38), this means that y∗g′(ŵ) + αϕ′(q̂) = 0, where y∗ = (p, β). Therefore, indeed
Assumption 4.4 implies Assumption 4.1.

In particular, Assumption 4.1 implies the Mangasarian-Fromovitz condition (41), hence also
the claim of Theorem 4.1 is valid. Applying Lemma 4.1 with ζ = 0 we obtain that any weak
solution ŵ = (x̂, û) of problem (3)–(6), together with the corresponding Lagrange multipliers
(p̂, β̂, α̂) ∈W 1.1×Rs×Rk satisfies (for a.e. t ∈ [t0, t1]) the following (local) Pontryagin conditions:

F̂(x, u, p, β, α)(t) :=



ṗ(t) + p(t)hx(w(t))
(p(t0),−p(t1)) + ϕ′0(q) +

∑
i∈I αiϕ

′
i(q) + βψ′(q)

p(t)hu(w(t))
−ẋ(t) + h(x(t), u(t))

ψ(q)
ϕ(q)−NRk

+
(α)


3 0. (52)

Introduce the space X̂ with elements s = (x, u, p, β, α) ∈W 1,1 × L∞ ×W 1,1 ×Rs ×Rk, in which
the mapping F̂ is defined. Note that the disturbed system (52) has the form z ∈ F̂(s) with
s = (x, u, p, β, α) ∈ X̂ and z = (π, ν, ρ, η, µ, ξ) ∈ Ẑ. Obviously, it is equivalent to the system
(45)-(47) complemented by the conditions h(x, u)− ẋ = η, ψ(q) = β, and ϕ(q)− ξ ∈ NRk

+
(α).

The following theorem claiming the subregularity property SMSr2 of the Pontryagin mapping
F̂ with the space Ẑ of disturbances (almost directly) follows from Theorem 4.2.

Theorem 4.3 Let ŝ = (x̂, û, p̂, β̂, α̂) ∈ X̂ be a solution of the inclusion 0 ∈ F̂(s), and let assump-
tions 4.2–4.4 be fulfilled at this point. Then there exist constants a > 0, b > 0 and κ ≥ 0 such
that for every z = (π, ν, ρ, η, µ, ξ) ∈ Ẑ with ‖z‖# := ‖π‖1 + |ν|+ ‖ρ‖2 + ‖η‖1 + |µ|+ |ξ| ≤ b and
for every solution s = (x, u, p, β, α) ∈ X̂ of the inclusion z ∈ F̂(s) with ‖x− x̂‖1,1 +‖u− û‖∞ ≤ a
it holds that

‖x− x̂‖1,1 + ‖u− û‖2 + ‖p− p̂‖1,1 + |β − β̂|+ |α− α̂| ≤ κ‖z‖#. (53)

Proof. Due to Lemma 4.1, the inclusion (π, ν, ρ, η, µ, ξ) ∈ F̂(s) with s = (x, u, p, β, α)∈ X̂ implies
the inclusion (ζ, η, µ, ξ) ∈ F(s) with ζ given by (44). Then from Theorem 4.2 we obtain the
estimation

‖x− x̂‖1,1 + ‖u− û‖2 + ‖p− p̂‖∞ + |β − β̂|+ |α− α̂| ≤ κ(‖ζ‖′′ + ‖η‖1 + |µ|+ |ξ|).

Using (44), we estimate

‖ζ‖′′ = sup
‖w‖′≤1

|ζw| ≤ sup
‖w‖′≤1

(|ν| |q|+ ‖π‖1 ‖x‖∞ + ‖ρ‖2 ‖u‖2)

≤ sup
‖w‖′≤1

(|ν|+ ‖π‖1 + ‖ρ‖2)‖w‖′ ≤ ‖z‖#.

Consequently,

‖x− x̂‖1,1 + ‖u− û‖2 + ‖p− p̂‖∞ + |β − β̂|+ |α− α̂| ≤ 2κ‖z‖#, (54)
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It remains to estimate ‖p − p̂‖1,1 using the already obtained estimation and (51). With an
appropriate constant c1 we have

‖p− p̂‖1,1 = |p(t0)− p̂(t0)|+ ‖ṗ− ˙̂p‖1
≤ |ϕ0q0(q)− ϕ0q0(q̂)|+

∣∣∑
i∈I

αiϕiq0(q)−
∑
i∈I

α̂iϕiq0(q̂)
∣∣

+
∣∣βψq0(q)− β̂ψq0(q̂)

∣∣+ ‖phx(w)− p̂hx(ŵ)‖1
≤ c1(|q − q̂|+ |α− α̂|+ |β − β̂|

+‖p− p̂‖∞ + ‖x− x̂‖∞ + ‖u− û‖2).

Then using (54) we complete the proof. 2

We mention that Theorem 4.3 is more general than Theorem 4.2, because it allows for more
general class of disturbances ζ, not necessarily representable in the form (44). Such disturbances
may lead to discontinuous multipliers p. However, their practical relevance is unclear.

4.3 Estimation in the L∞-norm for the controls

Observe that the estimation for the controls in (53) is with respect to the L2-norm. The utiliza-
tion of the space L2 for the control functions was essential for the formulation of the coercivity
condition. On the other hand, this choice of the space allows to involve disturbances ρ which are
small in L2 but not necessarily in L∞.

However, the regularity results in [7, 8] under coercivity include L∞ estimation for the control,
given that ρ is sufficiently small in L∞. This is, because, as shown in [7] the L∞ estimation follows
from the strengthened Legendre-Klebsch condition, which in its turn follows from coercitivity. All
this concerns problems without initial and terminal constraints for the state. In order to obtain
a similar result for problem (3)-(6) we first prove that the strong Legendre-Klebsch condition is
fulfilled also for this problem.

Suppose that Assumptions 4.2–4.4 are fulfilled for the reference point
(x̂, û, p̂, β̂, α̂). Then, by Theorem 3.2, the cost ϕ0 satisfies the quadratic growth condition: there
exist c > 0 and ε > 0 such that

ϕ0(q)− ϕ0(q̂) ≥ c(‖u− û‖22 + ‖x− x̂‖21,1)

for all admissible w = (x, u) such that ‖x− x̂‖1,1 < ε and ‖u− û‖∞ < ε. This implies that (ŷ, ŵ)
is a strong minimum in the problem

minimize ϕ0(q)− (y(t1)− y(t0)),

subject to
ẏ = c|u− û(t)|2, ẋ = h(x, u), ϕ(q) ≤ 0, ψ(q) = 0, u ∈ U(t),

where U(t) = {v ∈ Rm : |v − û(t)| < ε} and ŷ = 0. Introduce

H̃ = ph(x, u) + pyc|u− û(t)|2 = H(x, u, p) + pyc|u− û(t)|2,
l̃ = α0(ϕ0(q)− (y1 − y0)) + αϕ(q) + βψ(q).
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Then (ŷ, ŵ) satisfies the conditions of Pontryagin minimum principle: there are α0 ∈ R+, α ∈ Rk
+,

β ∈ Rs, p ∈W 1,1, py ∈W 1,1 such that

αϕ(q̂) = 0, α0 + |α|+ |β| > 0, −ṗ = phx(ŵ), −ṗy = 0,

(−p(t0), p(t1)) = l̃q, py(t0) = py(t1) = −α0,

H(x̂(t), u, p(t)) + pyc|u− û(t)|2 ≥ H(x̂(t), û(t), p(t)) for all u ∈ U(t).

(The latter holds for a.a. t ∈ [t0, t1].) It follows that py = −α0. Assume that α0 = 0. Then
we obtain the conditions of the minimum principle subject to the constraint |u − û(t)| < ε,
which implies the local minimum principle with α0 = 0 in problem (3)-(6). As we know, this is
impossible. Consequently, we can take α0 = 1. Then, as we know, α = α̂, β = β̂, p = p̂ and we
get for a.a. t ∈ [t0, t1]

H(x̂(t), u, p̂(t))−H(x̂(t), û(t), p̂(t)) ≥ c|u− û(t)|2

for all u ∈ Rm such that |u − û(t)| < ε. The strengthened Legendre-Klebsch condition follows:
for a.a. t ∈ [t0, t1]

〈Huu(x̂(t), û(t), p̂(t))v, v〉 ≥ c|v|2 ∀v ∈ Rm. (55)

Theorem 4.4 Let ŝ = (x̂, û, p̂, β̂, α̂) ∈ X̂ be a solution of the inclusion 0 ∈ F̂(s), and let assump-
tions 4.2–4.4 be fulfilled at this point. Then there exist constants a > 0, b > 0 and κ ≥ 0 such
that for every z = (π, ν, ρ, η, µ, ξ) ∈ Ẑ with ‖z‖◦ := ‖π‖1 + |ν|+ ‖ρ‖∞ + ‖η‖1 + |µ|+ |ξ| ≤ b and
for every solution s = (x, u, p, β, α) ∈ X̂ of the inclusion z ∈ F̂(s) with ‖x− x̂‖1,1 +‖u− û‖∞ ≤ a
it holds that

‖x− x̂‖1,1 + ‖u− û‖∞ + ‖p− p̂‖1,1 + |β − β̂|+ |α− α̂| ≤ κ‖z‖◦. (56)

Proof. Let Θ ⊂ [t0, t1] be a set of full measure in which (55) is fulfilled. Then the condition
number of the matrix Huu(x̂(t), û(t), p̂(t)) is uniformly bounded for t ∈ Θ.

Let (x, u, p, β, α) be as in the theorem. For a fixed t ∈ Θ we have (after a possible redefinition
of ρ on a set of measure zero)

ρ(t) = Hu(x(t), u(t), p(t)) = Hu(x̂(t), u(t), p̂(t))− r(t),

where, according to (53),

|r(t)| = |Hu(x(t), u(t), p(t))−Hu(x̂(t), u(t), p̂(t))| ≤ c1‖z‖#.

Here c1 is a constant independent of t. Then from the equations

Hu(x̂(t), û(t), p̂(t)) = 0, Hu(x̂(t), u(t), p̂(t)) = ρ(t) + r(t),

the inverse function theorem, and the uniform boundedness of the condition number ofHuu(x̂(t), û(t), p̂(t))
we obtain that for a constant c2 it holds that

|u(t)− û(t)| ≤ c2(|ρ(t)|+ |r(t)|) ≤ c2‖ρ‖∞ + c1c2‖z‖#.

Recall that this inequality holds on the set Θ of a full measure in [t0, t1]. This completes the
proof. 2
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