Forschungsgruppe ORCOS
> Zum Inhalt

Age-specific Control Models

General References:

  • Arthur, W.B. and G. McNicoll, (1977), Optimal time paths with age-dependence: a theory of population policy, Review of Economic Studies 44, 111-123.
  • Ascher, U., J. Christiansen and R. D. Russell, (1978), A collocation solver for mixed-order systems of boundary-value problems, Mathematics of Computation 33, 659-679.
  • Bensoussan, A., G., Nissen and C.S. Tapiero, (1975), Optimum inventory and product quality control with deterministic and stochastic deterioration - an application of distributed parame­ters control systems, IEEE Trans. Autom. Contr. AAC-20, 407-412.
  • Brokate, M., (1985), Pontryagin's principle for control problems in age-dependent population dynamics, Journal of Mathematical Biology 23, 75-101.
  • Butkovsky, A.G., (1969), Distributed control systems. American Elsevier Publ., New York.
  • Derzko, N.A., S.P. Sethi and G.L. Thompson, (1980), Distributed parameter systems approach to the optimal cattle ranching problem, Optimal Control Applications and Methods 1, 3-10.
  • Derzko, N.A., S.P. Sethi and G.L. Thompson, (1984), Necessary and sufficient conditions for optimal control of quasilinear partial differential systems, Journal of Optimization Theory and Applications 43, 89-101.
  • Gaimon, C. and G.L. Thompson, (1981), A distributed parameter cohort personnel planning model, Working paper 43-80-81, Carnegie-Mellon Univ. Pittsburgh.
  • Gopalsamy, K., (1976), Optimal control of age-dependent populations, Mathematical Bio­science 32, 155-163.
  • Gurtin, M.E. and L.F. Murphy, (1981), On the optimal harvesting of persistent age-structured populations, Journal of Mathematical Biology 13, 131-148.
  • Leonard, D. and N. V. Long, (1992), Optimal control theory and static optimization in economics, Cambridge University Press, Cambridge.
  • Murphy, L.F. and S.J. Smith, (1990), Optimal harvesting of an age-structured population, Journal of Mathematical Biology 29, 77-90.
  • Robson, A.J., (1985), Optimal control of systems governed by partial differential equations: economic applications, In: G. Feichtinger (Ed.) Optimal Control Theory and Economic Analysis 2, North-Holland, Amsterdam, 105-118.
  • Steindl, A., (1981), COLSYS: Ein Kollokationsverfahren zur Loesung von Randwertproblemen bei Systemen Gewoehnlicher Differentialgleichungen. Thesis, University of Technology, Vienna.
  • Tzafestas, S.G., (1982), Optimal and modal control of production-inventory systems, In S.G. Tzafestas (Ed.) Optimization and Control of Dynamic Operational Research Models, North-Holland, Amsterdam, 1-71.

Own Work:

  • Behrens, D. A., J. P. Caulkins, G. Tragler and G. Feichtinger, (1997), Controlling the US cocaine epidemic: finding the optimal mix of drug prevention and treatment. Working Paper 214, Department for Operations Research and Systems Theory, Vienna University of Tech­nology. Forthcoming in Management Science.
  • Behrens, D. A., J. P. Caulkins, G. Tragler, J. L. Haunschmied and G. Feichtinger, (1999), A dynamic model of drug initiation: implications for treatment and drug control. Mathematical Biosciences 159, 1-20.
  • Dawid, H. and Feichtinger, (1996), On the persistence of corruption. Journal of Economics 64, 177-193.
  • Dworak, M., G. Feichtinger, G. Tragler and J. P. Caulkins, (1998), On the effect of drug enforcement on property crime. Working Paper 215, Department for Operations Research and Systems Theory, Vienna University of Technology. Forthcoming in Journal of Economics.
  • Feichtinger, G., (1992), Limit cycles in dynamic economic systems. Annals of Operations Research 37, 313-344.
  • Feichtinger, G. and R.F. Hartl, (1986), Optimale Kontrolle oekonomischer Prozesse: Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften. de Gruyter, Berlin.
  • Feichtinger, G. and A. J. Novak, (1994), Differential game model of the dynastic cycle: 3D-canonical system with a stable limit cycle. Journal of Optimization Theory and Applications 80, 407-423.
  • Feichtinger, G., A. Novak and F. Wirl, (1994), Limit cycles in intertemporal adjustment models. Journal of Economic Dynamics and Control 18, 353-380.
  • Haurie, A., S.P. Sethi and R.F. Hartl, (1984), Optimal control of an age-structured population model with applications to social services planning. Large Scale Systems 6, 133-158.
  • Maurer, H., Ch. Büskens and G. Feichtinger, (1998), Solution techniques for periodic control problems: a case study in production planning. Optimal Control Applications and Methods 19, 185-203.
  • Muzicant, J., (1980), Systeme mit verteilten Parametern in der Biooekonomie: Ein Maximumprinzip zur Kontrolle altersstruktuierter Modelle. Diss., Technische Universitaet Wien.
  • Tragler, G., J. P. Caulkins and G. Feichtinger, (1997), The impact of enforcement and treatment on illicit drug consumption. Working Paper 212, Department for Operations Research and Systems Theory, Vienna University of Technology. Forthcoming in Operations Research.
  • Wirl, F., A. Novak, G. Feichtinger and H. Dawid, (1997), Indeterminacy of open-loop Nash equilibria: the ruling class versus the tabloid press. In H. G. Natke and Y. Ben-Haim, Uncertainty: Models and Measures. Akademie-Verlag, Berlin, 124-136.